Supplementary Material for A Versatile Octagonal Beam and V-Piece to Create Sculptures

Friedhelm Kürpig¹ and Tom Verhoeff²

¹Professor of Descriptive Geometry, University of Fine Arts Hamburg (retired), Aachen, Germany; kürpig.de, kuerpig@t-online.de
²Dept. Math. and CS, Eindhoven University of Technology, Netherlands; T.Verhoeff@tue.nl

Abstract

We provide additional images for our Bridges 2025 paper.

Additional images

Figures 1 through 4 appear in the paper in Figures 1 and 5 as smaller images. Figures 5 through 9 show additional artwork. Figures 10 through 22 are additional illustrations for the paper.

Figure 1: Rotunda, from 48 octagonal pieces (maple wood, 37.5 cm diameter).

Figure 2: Three rings connected by V-pieces (oak wood, $h \times w = 20 \times 32$ cm).

Figure 3: Lantern, (maple wood, 22×17.5 cm).

Figure 4: Octagonal cycle with square (maple wood, 17.5×17.5 cm).

Figure 5: Tower (*maple*, 17, 5 × 17.5 × 57 *cm*).

Figure 6: *Three connected squares (maple,* $14 \times 17.5 \times 21$ *cm).*

Figure 7: *Two intersecting rectangles (maple,* $12 \times 12 \times 29$ *cm).*

Figure 8: 8-sided cycle with bypass (maple, $17, 5 \times 17, 5 \times 20$ cm).

Figure 9: Climbing prisms (maple, $17.5 \times 17.5 \times 60$ cm).

Figure 10: Visit at studio of Koos Verhoeff (Jan. 2015).

Figure 11: Koos and Tom Verhoeff visit studio of Friedhelm Kürpig (Nov. 2017).

First sketch of Koos and Tom Verhoeff

Figure 12: Early sketch for joint work (Whitehead link, linking number zero).

Figure 13: Decagonal cycle for joint work (wenge).

Figure 14: Octagonal cycle for joint work (stainless steel).

Figure 15: Prisms with the same square cut face.

Lade für Dicktenhobel

Figure 16: *Custom support bed for planing machine to create* $1 : \sqrt{2}$ *-octagonal beams.*

Figure 17: Three rings of prisms with different cross sections, each with order-3 rotational symmetry (*left:* $1 : \sqrt{2}$ -rectangular; center: $1 : \sqrt{2}$ -rhombic; right: $1 : \sqrt{2}$ -octagonal.

Figure 18: Decagonal cycle of $1 : \sqrt{2}$ -octagonal beams (oak wood).

Figure 19: Angles for V-piece from $1 : \sqrt{2}$ -octagonal beam.

Figure 20: *Milling machine with three-axis vise to create V-piece from* $1 : \sqrt{2}$ *-octagonal beam.*

Figure 21: *Modular construction kit with magnetically joinable* $1 : \sqrt{2}$ *-octagonal beams.*

Figure 22: Degenerate trapezoidal connector piece for $1 : \sqrt{2}$ -octagonal beams.