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Abstract 

Today's fashion design is based on a separation of concerns such that the geometry of the fabric motif and the 
geometry of the pattern cut are unrelated. We challenge this approach by developing mathematical tools to morph 
the motif. The core innovation lies in the mathematical framework, based on holomorphic mappings and harmonic 
conjugate functions, to map motifs onto arbitrarily shaped panels. This approach, implemented via custom 
software, allows for seamless motif continuation across complex garment shapes, avoiding cutting through 
repeating designs. This supplement describes the workflow and some algorithmic aspects for designing a single 
garment panel as described in the main Bridges 2025 paper by the same authors.  

 

Workflow 
The starting point of the process is a drawing of the panel, in the simplest case a contour consisting of four 
Bézier curves, as shown in Figure 1(a). Note the handles of the Bézier curves [5], they can be manipulated 
interactively, just like in Adobe Illustrator. We use cubic Béziers, so each curve has two handles.  

          
 

Figure 1: Contour definition: (a) Bézier curves, (b) voltages, (c) scaffold. 

The first step after editing is to set the upper and lower  contour lines of the panels to specific potential 
values, which we choose 1 and 0, without loss of generality. The color scheme shows 1 as yellow, 0 as dark 
purple and an interpolating color for the in-between values, see Figure 1(b). We use the language of 
electrostatics as a vocabulary [2], stating that we electrified the upper and lower lines with 1 and 0 volt 
respectively. The side lines of the contour are treated as “insulators” and the image shows this as a potential 
that changes from 1 to 0 in a continuous manner along each side line. The goal is to find the field lines and 
equipotential lines so as to form a grid that serves as a basis for mapping the motif later. As a preparation 
for obtaining meaningful distances, there is an extra step, which we chose to do manually. The two extra 



 
 

lines in Figure 1(c) form what we call a “scaffold”1. In the next step, the scaffold lines will automatically 
equipped with markers that will serve as the starting points for the steepest descent algorithm that finds the 
field lines and the equipotential lines.  

          
 

Figure 2: Computations: (a) initial pot, (b) refined pot, (c) field lines.  

Next we calculate the potential for the entire inner area of the panel. It is already defined by the boundary 
conditions and we have an algorithm to get the potential everywhere (a relaxation algorithm).  

Our algorithm is a bit slow (up to ten minutes on an HP Z-book, depending on the size of the area) and 
therefore we begin with a good initial guess, shown in Figure 2(a).  The potential goes from 1 at the top of 
the plot window to 0 at the bottom. The window corresponds to an array of size 300 × 300 (named pot-
array),  the main data structure for the relaxation algorithm.  

In Figure 2(b), the relaxation algorithm is completed and we have the potential for every position. The 
dotted area is the outside of the contour, where the algorithm produces some values, but these are not very 
helpful. Also note that the scaffold lines show marker points, which are derived from the potential. The 
horizontal scaffold line is subdivided into 20 steps, and the vertical scaffold in 22 steps. This means that 
we will have 21 field lines and 23 equipotential lines. For subdividing the vertical scaffold, the potential 
defines the marker positions2, which are separated by steps of 1/22. The field lines are shown red in Figure 
2(c) and they go through the markers on the scaffold, as expected.    

 
1 Instead of using straight lines for the scaffold, which would be sufficient in most cases, I chose to use Bézier curves 
since at had them already as a class in my code and as editable in my user-interface for the user-defined boundaries. 
2 The potential defines the marker positions, by which we mean that once the potential 𝜓𝜓 (= voltage) is given at all 
positions, we can find the points on the scaffold line such that the potential difference is equal for all steps. Since the 
total voltage difference is 1 volt, we begin at one end, say at 0 volt and then move along the line until we find the point 
of the desired 1/22 volt, then we look for the next and so forth. In practice, we move forward in tiny steps and use 
interpolation within (binary search would be faster, but in view of the much slower relaxation, this once-only 
electrification of scaffold lines is fast enough). We can find good potential values at any point 𝑥𝑥 + 𝑖𝑖𝑖𝑖 by interpolating 
between the values of the (discrete) array-cells. 



 
 

            
 

Figure 3: More computations: (a) conjugate harmonic, (b) equipotential lines, (c) both line types. 

In order to do the same for the equipotential lines we use another potential-like array, which we call the 
conjugate harmonic of the potential (con-array). The concept of “conjugate harmonic” is explained in the 
main Bridges paper and in [1]. If the potential happens to decrease when going vertically, then the conjugate 
harmonic decreases when going from left to right (for example if 𝜓𝜓 = 𝑖𝑖, then potential decreases when 
going vertically indeed, and then by the Cauchy-Riemann conditions 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 = −𝜕𝜕𝜓𝜓/𝜕𝜕𝑖𝑖 = −𝜕𝜕𝑖𝑖/𝜕𝜕𝑖𝑖 = −1 
and  𝜕𝜕𝜕𝜕/𝑑𝑑𝑖𝑖 =  𝜕𝜕𝜓𝜓/𝜕𝜕𝑥𝑥 = 𝜕𝜕𝑖𝑖/𝜕𝜕𝑥𝑥 = 0, so 𝜕𝜕 = −𝑥𝑥 + "constant"). We have an algorithm for that too, 
essentially a kind of numeric path integration with one-pixel steps (no reference available, integration is 
replaced by summation: I “integrate” by adding 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 when making a step in the 𝑥𝑥 direction and 𝜕𝜕𝜕𝜕/𝜕𝜕𝑖𝑖 
when making a step in the 𝑖𝑖 direction3). The contents of the con-array is shown in Figure 3(a). Using 
steepest descent [3] in the con-array gives us a bundle of equipotential lines, shown in Figure 3(b). In Figure 
3(c) we present both field lines and equipotential lines on a background of the potential (color coded).  

                
 

Figure 4: Final steps: (a) motif morphing, (b) svg file, (c) postprocessing. 

Next the intersection points can be found and thus we have enough for mapping a motif which originates 
from a rectangular grid onto the new grid. Besides the morphed motif, we also reinterpret the field lines as 
being built from Béziers [5] (which is in fact an approximation). Each of the 22 segments of each field line 
is transformed into a tiny (approximated) Bézier curve with two anchors and two control points.  

 
3 Here the 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝑖𝑖 are known by the Cauchy-Riemann conditions: essentially, they are like 𝜕𝜕𝜓𝜓/𝜕𝜕𝑥𝑥 and 
𝜕𝜕𝜓𝜓/𝜕𝜕𝑖𝑖, but rotated counter-clockwise over 90°. Integration begins at an arbitrary “Greenwich” point in a central 
region and then works outward like an inkpot flooding algorithm in steps of ±1 in either 𝑥𝑥 or 𝑖𝑖 direction. The 
boundaries of the panel act as a wall for the flooding. 



 
 

Next the motifs are mapped. Each grid cell gets one motif. Inside each grid cell we do a kind of  bilinear 
interpolation (bilinear interpolation is well-known, yet our adaptation to Béziers [5] is new to the best of 
my knowledge, see the last section of this supplement). The motif must be described in Bézier curves as 
well, and the curves are morphed by mapping their control points (Figure 4(a), also showing the user 
interface of our software4). Now we can forget the pot- and con-arrays whereas all the Béziers thus produced 
written to file in .svg format (Figure 4(b)). The .svg file can be opened and edited further in Adobe Illustrator 
or Inkscape, as shown in Figure 4(c), where one of the letters L of the double-L motif is being fine-tuned. 

 
Computing Potentials from Boundary conditions 

 

The theory of complex variables is closely related to the theory of 2D electric fields and from the latter we 
borrow concepts such as potentials and field lines. For a given panel pattern, we interpret its curved sides 
as conductors of fixed voltage or as “insulators” (at least, that’s how I call them). Therefore, we can obtain 
the field lines by numerically solving am equation in a pixel grid with chosen boundary conditions. The 
field lines and equipotential lines, reinterpreted as Bézier curves [5] provide us a smooth grid for morphing 
the motif.  

A potential 𝜓𝜓 is determined by its boundary conditions, which can be of several types: Dirichlet 
conditions define 𝜓𝜓 at certain places to have a fixed value; Neumann conditions define 𝜓𝜓 to have a fixed 
derivative. There are more types of possible boundary conditions than just Dirichlet and Neumann 
conditions (e.g. Robin boundary conditions), the conditions used in the paper are “mixed” (some Dirichlet 
and some Neumann boundaries).  In an application with four sides, A, B, C, and D say (A opposite C), we 
apply Dirichlet conditions to A and C, Neumann conditions to the other sides B and D. The Dirichlet 
conditions guarantee that A and C behave as capacitor plates (we set their voltage always to 1 and 0 volt), 
whereas the Neumann conditions guarantee that the field lines do not cross the side edges B and D. 
Configurations with more sides are also possible. 

In very simple configurations, Laplace's equation can be solved by a formula (like 𝑒𝑒𝜔𝜔𝜔𝜔 for the cone 
described in the first section of the main paper). In most applications however, these solutions are not 
available, and we must find approximations by numerical methods. One such method is the Schwarz–
Christoffel mapping [1], but that only works for polygons (no known algorithms for Béziers, except 
algorithms of the relaxation type, as we use here). We use a method called Laplacian relaxation [4].  The 
area of interest in the complex plane is represented by an array, indexed by integers 0. . 𝑗𝑗max − 1  and 
0. . 𝑖𝑖max − 1. The array is initialized at boundaries: the values at Dirichlet boundaries are frozen. A Bézier 
curve [5] is given by  𝑧𝑧(𝑡𝑡) = 𝑎𝑎1(1 − 𝑡𝑡)3  +  3𝑐𝑐1(1− 𝑡𝑡)2𝑡𝑡 + 3𝑐𝑐2(1− t)𝑡𝑡2 +  𝑎𝑎2𝑡𝑡3 for 𝑡𝑡 ∈ [0,1] for anchor 
points 𝑎𝑎1,𝑎𝑎2, control points, 𝑐𝑐1, 𝑐𝑐2. Rounding the real and imaginary parts of 𝑧𝑧(𝑡𝑡) to integers allows us to 
assign and freeze5 the voltages of the Dirichlet condition into the pot-array 𝑣𝑣 (line thickness 2: the situation 
is like writing a line with the pencil tool in Microsoft Paint where pixelation is unavoidable and one must 
choose a discrete line thickness). The “relaxation” assignment  𝑣𝑣[𝑗𝑗, 𝑖𝑖] ← avg(𝑣𝑣[𝑗𝑗 ± 1, 𝑖𝑖 ± 1]), that is, 

𝑣𝑣[𝑗𝑗, 𝑖𝑖]  ←  (𝑣𝑣[𝑗𝑗 + 1, 𝑖𝑖]  +  𝑣𝑣[𝑗𝑗 − 1, 𝑖𝑖]  +  𝑣𝑣[𝑗𝑗, 𝑖𝑖 + 1] +  𝑣𝑣[𝑗𝑗, 𝑖𝑖 − 1]) / 4 

is repeated many times for all 𝑗𝑗 in the range 0. . 𝑗𝑗max − 1 and 𝑖𝑖 in 0. . 𝑖𝑖max − 1 such that (𝑖𝑖, 𝑗𝑗) is not a 
boundary point. The Dirichlet (conductor) positions remain untouched. Handling the Neumann conditions 
was more challenging; inspiration came from github.com/yohanyee/laplace-relaxation. The 
boundary-position step is 𝑣𝑣[𝑗𝑗, 𝑖𝑖] ← avg(𝑣𝑣[𝑗𝑗 ± 1, 𝑖𝑖 ± 1]) but now the averaging is only over free neighbors, 
i.e., the set of index pairs from (𝑗𝑗 ± 1, 𝑖𝑖 ± 1) that are not subject to a boundary condition.  

 
4 The code is available on  github.com/LoeFeijs/HolomorphicMappings, but it is still very experimental.    
5 By “freeze” we mean that they are not to be changed by the assignment statement of the relaxation algorithm. 



 
 

We compute the conjugate harmonic of the potential by path integration, starting from an arbitrary 
“Greenwich” point (𝑗𝑗0, 𝑖𝑖0) which we assign the value 0. The paths consist of one-pixel steps following an 
inkpot-like flooding strategy6. The inkpot-like flooding strategy is chosen to avoid integrating closely along 
the edges, where the field is not accurate enough. 

Then we find the field lines by steepest descent in the potential (pot) array and the equipotential lines 
by steepest descent in the harmonic conjugate (con) array. The spacing between the equipotential lines is 
straightforward now: if we want 11 lines, for example, we divide an arbitrary scaffold line going from 0 
volt to 1 volt into 𝑁𝑁 − 1 = 10 segments, locating the points of 0.1, 0.2, etc. volts. These are the starting 
points for the steepest descent procedure.  
 

Interpolating inside Grid Cells defined by Bézier Curves 

We sketch our bilinear interpolation between the Bézier curves of a grid cell in Figure 5. For the theory of 
Bézier curves, see [5].  Each control point or anchor point of the motif  𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 is mapped into the grid 
cell indexed 𝑗𝑗 = ⌊𝑖𝑖⌋, 𝑖𝑖 = ⌊𝑥𝑥⌋ so within that cell we have interpolation parameters 𝑡𝑡𝑥𝑥 = 𝑥𝑥 − ⌊𝑥𝑥⌋ and 𝑡𝑡𝑦𝑦 =
𝑖𝑖 − ⌊𝑖𝑖⌋.  

 
Figure 5: Bilinear interpolation in grid cell. 

 
This, along with all other algorithms involved, is coded in Python 3.9 (www.python.org).  Numpy 
(https://numpy.org) is used for working with large arrays and Matplotlib 
(https://matplotlib.org) for interactivity and displaying intermediate results. The Numba 
(https://numba.pydata.org/) just-in-time compiler for Python is indispensable for speeding up the 
computations. 
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EXTRA MATERIAL 
 
We add some images of the generated panels, such as for the “wave dress” and the “narrow-panels dress”. 
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