

BRIDGES 2025 SUPPLEMENT
Workflow and Algorithms for Holomorphic Mappings for

Integrated Garment and Motif Design

 Loe Feijs1,3 and Rong-Hao Liang1 and Holly Krueger1,2 and Marina Toeters4

1University of Technology Eindhoven, The Netherlands; j.liang@tue.nl
2Holly Krueger Design, Amsterdam, The Netherlands; h.l.krueger@tue.nl

3Laurentius.Lab, Sittard, The Netherlands; l.m.g.feijs@tue.nl
4by-wire.net, Eindhoven, The Netherlands; info@by-wire.net

Abstract

Today's fashion design is based on a separation of concerns such that the geometry of the fabric motif and the
geometry of the pattern cut are unrelated. We challenge this approach by developing mathematical tools to morph
the motif. The core innovation lies in the mathematical framework, based on holomorphic mappings and harmonic
conjugate functions, to map motifs onto arbitrarily shaped panels. This approach, implemented via custom
software, allows for seamless motif continuation across complex garment shapes, avoiding cutting through
repeating designs. This supplement describes the workflow and some algorithmic aspects for designing a single
garment panel as described in the main Bridges 2025 paper by the same authors.

Workflow
The starting point of the process is a drawing of the panel, in the simplest case a contour consisting of four
Bézier curves, as shown in Figure 1(a). Note the handles of the Bézier curves [5], they can be manipulated
interactively, just like in Adobe Illustrator. We use cubic Béziers, so each curve has two handles.

Figure 1: Contour definition: (a) Bézier curves, (b) voltages, (c) scaffold.

The first step after editing is to set the upper and lower contour lines of the panels to specific potential
values, which we choose 1 and 0, without loss of generality. The color scheme shows 1 as yellow, 0 as dark
purple and an interpolating color for the in-between values, see Figure 1(b). We use the language of
electrostatics as a vocabulary [2], stating that we electrified the upper and lower lines with 1 and 0 volt
respectively. The side lines of the contour are treated as “insulators” and the image shows this as a potential
that changes from 1 to 0 in a continuous manner along each side line. The goal is to find the field lines and
equipotential lines so as to form a grid that serves as a basis for mapping the motif later. As a preparation
for obtaining meaningful distances, there is an extra step, which we chose to do manually. The two extra

lines in Figure 1(c) form what we call a “scaffold”1. In the next step, the scaffold lines will automatically
equipped with markers that will serve as the starting points for the steepest descent algorithm that finds the
field lines and the equipotential lines.

Figure 2: Computations: (a) initial pot, (b) refined pot, (c) field lines.

Next we calculate the potential for the entire inner area of the panel. It is already defined by the boundary
conditions and we have an algorithm to get the potential everywhere (a relaxation algorithm).

Our algorithm is a bit slow (up to ten minutes on an HP Z-book, depending on the size of the area) and
therefore we begin with a good initial guess, shown in Figure 2(a). The potential goes from 1 at the top of
the plot window to 0 at the bottom. The window corresponds to an array of size 300 × 300 (named pot-
array), the main data structure for the relaxation algorithm.

In Figure 2(b), the relaxation algorithm is completed and we have the potential for every position. The
dotted area is the outside of the contour, where the algorithm produces some values, but these are not very
helpful. Also note that the scaffold lines show marker points, which are derived from the potential. The
horizontal scaffold line is subdivided into 20 steps, and the vertical scaffold in 22 steps. This means that
we will have 21 field lines and 23 equipotential lines. For subdividing the vertical scaffold, the potential
defines the marker positions2, which are separated by steps of 1/22. The field lines are shown red in Figure
2(c) and they go through the markers on the scaffold, as expected.

1 Instead of using straight lines for the scaffold, which would be sufficient in most cases, I chose to use Bézier curves
since at had them already as a class in my code and as editable in my user-interface for the user-defined boundaries.
2 The potential defines the marker positions, by which we mean that once the potential 𝜓𝜓 (= voltage) is given at all
positions, we can find the points on the scaffold line such that the potential difference is equal for all steps. Since the
total voltage difference is 1 volt, we begin at one end, say at 0 volt and then move along the line until we find the point
of the desired 1/22 volt, then we look for the next and so forth. In practice, we move forward in tiny steps and use
interpolation within (binary search would be faster, but in view of the much slower relaxation, this once-only
electrification of scaffold lines is fast enough). We can find good potential values at any point 𝑥𝑥 + 𝑖𝑖𝑖𝑖 by interpolating
between the values of the (discrete) array-cells.

Figure 3: More computations: (a) conjugate harmonic, (b) equipotential lines, (c) both line types.

In order to do the same for the equipotential lines we use another potential-like array, which we call the
conjugate harmonic of the potential (con-array). The concept of “conjugate harmonic” is explained in the
main Bridges paper and in [1]. If the potential happens to decrease when going vertically, then the conjugate
harmonic decreases when going from left to right (for example if 𝜓𝜓 = 𝑖𝑖, then potential decreases when
going vertically indeed, and then by the Cauchy-Riemann conditions 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 = −𝜕𝜕𝜓𝜓/𝜕𝜕𝑖𝑖 = −𝜕𝜕𝑖𝑖/𝜕𝜕𝑖𝑖 = −1
and 𝜕𝜕𝜕𝜕/𝑑𝑑𝑖𝑖 = 𝜕𝜕𝜓𝜓/𝜕𝜕𝑥𝑥 = 𝜕𝜕𝑖𝑖/𝜕𝜕𝑥𝑥 = 0, so 𝜕𝜕 = −𝑥𝑥 + "constant"). We have an algorithm for that too,
essentially a kind of numeric path integration with one-pixel steps (no reference available, integration is
replaced by summation: I “integrate” by adding 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 when making a step in the 𝑥𝑥 direction and 𝜕𝜕𝜕𝜕/𝜕𝜕𝑖𝑖
when making a step in the 𝑖𝑖 direction3). The contents of the con-array is shown in Figure 3(a). Using
steepest descent [3] in the con-array gives us a bundle of equipotential lines, shown in Figure 3(b). In Figure
3(c) we present both field lines and equipotential lines on a background of the potential (color coded).

Figure 4: Final steps: (a) motif morphing, (b) svg file, (c) postprocessing.

Next the intersection points can be found and thus we have enough for mapping a motif which originates
from a rectangular grid onto the new grid. Besides the morphed motif, we also reinterpret the field lines as
being built from Béziers [5] (which is in fact an approximation). Each of the 22 segments of each field line
is transformed into a tiny (approximated) Bézier curve with two anchors and two control points.

3 Here the 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝑖𝑖 are known by the Cauchy-Riemann conditions: essentially, they are like 𝜕𝜕𝜓𝜓/𝜕𝜕𝑥𝑥 and
𝜕𝜕𝜓𝜓/𝜕𝜕𝑖𝑖, but rotated counter-clockwise over 90°. Integration begins at an arbitrary “Greenwich” point in a central
region and then works outward like an inkpot flooding algorithm in steps of ±1 in either 𝑥𝑥 or 𝑖𝑖 direction. The
boundaries of the panel act as a wall for the flooding.

Next the motifs are mapped. Each grid cell gets one motif. Inside each grid cell we do a kind of bilinear
interpolation (bilinear interpolation is well-known, yet our adaptation to Béziers [5] is new to the best of
my knowledge, see the last section of this supplement). The motif must be described in Bézier curves as
well, and the curves are morphed by mapping their control points (Figure 4(a), also showing the user
interface of our software4). Now we can forget the pot- and con-arrays whereas all the Béziers thus produced
written to file in .svg format (Figure 4(b)). The .svg file can be opened and edited further in Adobe Illustrator
or Inkscape, as shown in Figure 4(c), where one of the letters L of the double-L motif is being fine-tuned.

Computing Potentials from Boundary conditions

The theory of complex variables is closely related to the theory of 2D electric fields and from the latter we
borrow concepts such as potentials and field lines. For a given panel pattern, we interpret its curved sides
as conductors of fixed voltage or as “insulators” (at least, that’s how I call them). Therefore, we can obtain
the field lines by numerically solving am equation in a pixel grid with chosen boundary conditions. The
field lines and equipotential lines, reinterpreted as Bézier curves [5] provide us a smooth grid for morphing
the motif.

A potential 𝜓𝜓 is determined by its boundary conditions, which can be of several types: Dirichlet
conditions define 𝜓𝜓 at certain places to have a fixed value; Neumann conditions define 𝜓𝜓 to have a fixed
derivative. There are more types of possible boundary conditions than just Dirichlet and Neumann
conditions (e.g. Robin boundary conditions), the conditions used in the paper are “mixed” (some Dirichlet
and some Neumann boundaries). In an application with four sides, A, B, C, and D say (A opposite C), we
apply Dirichlet conditions to A and C, Neumann conditions to the other sides B and D. The Dirichlet
conditions guarantee that A and C behave as capacitor plates (we set their voltage always to 1 and 0 volt),
whereas the Neumann conditions guarantee that the field lines do not cross the side edges B and D.
Configurations with more sides are also possible.

In very simple configurations, Laplace's equation can be solved by a formula (like 𝑒𝑒𝜔𝜔𝜔𝜔 for the cone
described in the first section of the main paper). In most applications however, these solutions are not
available, and we must find approximations by numerical methods. One such method is the Schwarz–
Christoffel mapping [1], but that only works for polygons (no known algorithms for Béziers, except
algorithms of the relaxation type, as we use here). We use a method called Laplacian relaxation [4]. The
area of interest in the complex plane is represented by an array, indexed by integers 0. . 𝑗𝑗max − 1 and
0. . 𝑖𝑖max − 1. The array is initialized at boundaries: the values at Dirichlet boundaries are frozen. A Bézier
curve [5] is given by 𝑧𝑧(𝑡𝑡) = 𝑎𝑎1(1 − 𝑡𝑡)3 + 3𝑐𝑐1(1− 𝑡𝑡)2𝑡𝑡 + 3𝑐𝑐2(1− t)𝑡𝑡2 + 𝑎𝑎2𝑡𝑡3 for 𝑡𝑡 ∈ [0,1] for anchor
points 𝑎𝑎1,𝑎𝑎2, control points, 𝑐𝑐1, 𝑐𝑐2. Rounding the real and imaginary parts of 𝑧𝑧(𝑡𝑡) to integers allows us to
assign and freeze5 the voltages of the Dirichlet condition into the pot-array 𝑣𝑣 (line thickness 2: the situation
is like writing a line with the pencil tool in Microsoft Paint where pixelation is unavoidable and one must
choose a discrete line thickness). The “relaxation” assignment 𝑣𝑣[𝑗𝑗, 𝑖𝑖] ← avg(𝑣𝑣[𝑗𝑗 ± 1, 𝑖𝑖 ± 1]), that is,

𝑣𝑣[𝑗𝑗, 𝑖𝑖] ← (𝑣𝑣[𝑗𝑗 + 1, 𝑖𝑖] + 𝑣𝑣[𝑗𝑗 − 1, 𝑖𝑖] + 𝑣𝑣[𝑗𝑗, 𝑖𝑖 + 1] + 𝑣𝑣[𝑗𝑗, 𝑖𝑖 − 1]) / 4

is repeated many times for all 𝑗𝑗 in the range 0. . 𝑗𝑗max − 1 and 𝑖𝑖 in 0. . 𝑖𝑖max − 1 such that (𝑖𝑖, 𝑗𝑗) is not a
boundary point. The Dirichlet (conductor) positions remain untouched. Handling the Neumann conditions
was more challenging; inspiration came from github.com/yohanyee/laplace-relaxation. The
boundary-position step is 𝑣𝑣[𝑗𝑗, 𝑖𝑖] ← avg(𝑣𝑣[𝑗𝑗 ± 1, 𝑖𝑖 ± 1]) but now the averaging is only over free neighbors,
i.e., the set of index pairs from (𝑗𝑗 ± 1, 𝑖𝑖 ± 1) that are not subject to a boundary condition.

4 The code is available on github.com/LoeFeijs/HolomorphicMappings, but it is still very experimental.
5 By “freeze” we mean that they are not to be changed by the assignment statement of the relaxation algorithm.

We compute the conjugate harmonic of the potential by path integration, starting from an arbitrary
“Greenwich” point (𝑗𝑗0, 𝑖𝑖0) which we assign the value 0. The paths consist of one-pixel steps following an
inkpot-like flooding strategy6. The inkpot-like flooding strategy is chosen to avoid integrating closely along
the edges, where the field is not accurate enough.

Then we find the field lines by steepest descent in the potential (pot) array and the equipotential lines
by steepest descent in the harmonic conjugate (con) array. The spacing between the equipotential lines is
straightforward now: if we want 11 lines, for example, we divide an arbitrary scaffold line going from 0
volt to 1 volt into 𝑁𝑁 − 1 = 10 segments, locating the points of 0.1, 0.2, etc. volts. These are the starting
points for the steepest descent procedure.

Interpolating inside Grid Cells defined by Bézier Curves

We sketch our bilinear interpolation between the Bézier curves of a grid cell in Figure 5. For the theory of
Bézier curves, see [5]. Each control point or anchor point of the motif 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 is mapped into the grid
cell indexed 𝑗𝑗 = ⌊𝑖𝑖⌋, 𝑖𝑖 = ⌊𝑥𝑥⌋ so within that cell we have interpolation parameters 𝑡𝑡𝑥𝑥 = 𝑥𝑥 − ⌊𝑥𝑥⌋ and 𝑡𝑡𝑦𝑦 =
𝑖𝑖 − ⌊𝑖𝑖⌋.

Figure 5: Bilinear interpolation in grid cell.

This, along with all other algorithms involved, is coded in Python 3.9 (www.python.org). Numpy
(https://numpy.org) is used for working with large arrays and Matplotlib
(https://matplotlib.org) for interactivity and displaying intermediate results. The Numba
(https://numba.pydata.org/) just-in-time compiler for Python is indispensable for speeding up the
computations.

Acknowledgements: We thank Troy Nachtigall and the Fashion Tech Farm and TU/e Wearable Senses
communities for their en support and the Bridges reviewers for their valuable feedback.

References
[1] R.V. Churchill, J.W. Brown, and R.F. Verhey. Complex variables and applications, third edition. McGraw-

Hill Kogakusha, 1974.
[2] N. Jonassen. Electrostatics, second edition. Kluwer 2002.
[3] Rosenbloom, P. (1956). “The method of steepest descent.” Proc Symp Appl Math, Vol. 6, pp. 127–176).
[4] G.Steele. Partial Differential Equations 1: Boundary Value Problems. In: TN2513 Computational Science

2019/2020 (chapter 13). Online:
https://nsweb.tn.tudelft.nl/~gsteele/TN2513_2019_2020/13%20Partial%20Differential%20Equations%201%2
0-%20Boundary%20Value%20Problems.html

[5] Wikipedia. Bézier curve. Online: https://en.wikipedia.org/wiki/B%C3%A9zier_curve

6 https://www.freecodecamp.org/news/flood-fill-algorithm-explained-with-examples/

https://numba.pydata.org/
https://nsweb.tn.tudelft.nl/%7Egsteele/TN2513_2019_2020/13%20Partial%20Differential%20Equations%201%20-%20Boundary%20Value%20Problems.html
https://nsweb.tn.tudelft.nl/%7Egsteele/TN2513_2019_2020/13%20Partial%20Differential%20Equations%201%20-%20Boundary%20Value%20Problems.html
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

EXTRA MATERIAL

We add some images of the generated panels, such as for the “wave dress” and the “narrow-panels dress”.

	Abstract
	Workflow
	Computing Potentials from Boundary conditions
	Interpolating inside Grid Cells defined by Bézier Curves
	References
	EXTRA MATERIAL

