
Derivatives Hidden in Word Puzzles

Donald Spector

Dept. of Physics, Hobart and William Smith Colleges, Geneva, NY, USA; spector@hws.edu

Abstract

We consider two closely related word puzzles, and show that each of these is based on an operation that can be
interpreted mathematically as a derivative. While the appearance of this mathematical structure in such a context
might be surprising, the identification arises quite naturally in both cases, and the resulting derivatives are in the
same family as the derivative defined in type theory. We construct the derivatives appropriate to each of these word
puzzles, and show how they can be used to frame these puzzles and to motivate some additional related questions.

Introduction

This paper is about a surprising mathematical feature I realized was present when I was playing with a
particular word puzzle. There is, of course, a wide range of word puzzles and wordplay that involve
manipulating the letters with which words are spelled. For example, while one can always take a word
and reverse its spelling (e.g., turning “bridge” into “egdirb”), it is interesting to find words which, when
reversed, produce another valid word (e.g., “drawer” into “reward”), or to find palindromes, words which,
when reversed, produce the same word (e.g., “level”). Anagrams form another realm, words whose letters
can be shuffled to produce new words (e.g., “night” into “thing”), with the added feature sometimes that those
anagrams are also synonyms (e.g., “evil” and “vile”). The Wordways archive [5] and Eckler’s Making the
Alphabet Dance [1] are sources in which to see the range of wordplay puzzles people have engaged in.

The puzzle I happened to be thinking about was based on this question: Can you find a word such that,
upon deletion of any letter in that word, the remaining letters still spell a valid word? Such an occurrence
is called a Baltimore deletion [4]. (For the examples in this paper, I will work with English words, though
the ideas can be employed in other alphabetic languages as well.) Most words do not have this property, but
one can find examples. For example, “pear” produces, upon Baltimore deletion, four possible words: ‘pea�r,’
‘pe�ar,’ ‘p�ear,’ and ‘�pear,’ yielding the words ‘pea,’ ‘per,’ ‘par,’ and ‘ear.’ An alternative exercise is to consider
whether each of the possible deletions produces a group of letters that can be anagrammed (rearranged) to
form a word; thus, while “gear” upon ordinary deletion would produce ‘gea,’ ‘ger,’ ‘gar,’ and ‘ear,’ not all
of which are words, each of these letter groupings can be rearranged to spell a word: ‘age,’ ‘erg,’ ‘rag,’ and
‘ear.’ (Of course, the choice of words in this second case is not necessarily unique; here, the penultimate
word could have been left as ‘gar,’ and the last word could just as well be chosen to be ‘are’ or ‘era.’) This
permutation-based alternative is called a Baltimore transdeletion [4].

As I will show in this paper, the underlying processes that generate Baltimore deletions and Baltimore
transdeletions have the mathematical structure of a derivative. In other words, we might say that the goal
of these puzzles is to find words that are differentiable! We will also use our findings to motivate some
additional word puzzle questions. Furthermore, the derivatives we will define below (each of the puzzles
above is associated with a slightly different derivative) are in the same family as the type theory derivatives
defined by McBride [3].

Bridges 2025 Conference Proceedings

519

Derivatives

In a first course in calculus, the derivative of a function 𝑓 : R → R at a point 𝑥 ∈ 𝑅 is defined via

𝑑𝑓

𝑑𝑥
= lim

ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

. (1)

From this definition, one obtains a variety of results, including, most notably for our purposes, the Leibniz
rule, namely that, given the product of two functions 𝑓 and 𝑔,

𝑑

𝑑𝑥
(𝑓 𝑔) = 𝑑𝑓

𝑑𝑥
𝑔 + 𝑓

𝑑𝑔

𝑑𝑥
. (2)

However, derivatives can arise in contexts that have nothing to do with limits. Indeed, given operators
𝐷 and 𝑋 for which their order of application matters, but with the property that 𝐷𝑋 − 𝑋𝐷 = I (where I is
the identity operator), then 𝐷 will act as a derivative on expressions involving 𝑋 , reproducing the familiar
power rules, the Leibniz rule, and so forth. This algebraic approach can be used to formulate the derivatives
defined below, but in the interests of space, I will focus on demonstrating that the structures defined below
satisfy the Leibniz rule. (Some authors refer to an operation that satisfies the Leibniz rule as a derivation,
but we will keep the term derivative, just as is done in [3].)

In what we discuss below, it will be useful to introduce the notion of a bag, also called a multiset, with
the symbols * and + as delimiters when we wish to denote a bag by listing its elements. A bag is like a set,
except one keeps track of multiplicities. Thus, given the bags M = *𝑎, 𝑏, 𝑐+ and N = *𝑏, 𝑑, 𝑒+, the union
M ∪N = *𝑎, 𝑏, 𝑏, 𝑐, 𝑑, 𝑒+. Note that the order of the items in a bag does not matter; *𝑎, 𝑏, 𝑏+ = *𝑏, 𝑎, 𝑏+.
For our purposes, the union will play the role of the sum, so we will also write M ⊕ N = M ∪N .

The Derivative Underlying Baltimore Deletions

Suppose we have two sequences, 𝑋 = 𝑥1𝑥2 . . . 𝑥𝑚 and𝑌 = 𝑦1𝑦2 . . . 𝑦𝑛. If we were just dealing with sequences,
we would define the product of these sequences as their concatenation, 𝑋 · 𝑌 = 𝑥1𝑥2 . . . 𝑥𝑚𝑦1𝑦2 . . . 𝑦𝑛.
However, we are going to be interested in bags of sequences, and so if we have one sequence, we will think
of it as the bag X = *𝑋+ . Now suppose we have two bags of sequences, M and N , whose members are
M𝑖 and N𝑗 , respectively. Then the product M ◦N , which we will term the 𝑐-product (due to the underlying
connection to concatenations), will be the bag containing all sequences (counting multiplicities, as these are
bags, not sets) of the form M𝑖 · N𝑗 . Thus, M ◦N = *M𝑖 · N𝑗 |M𝑖 ∈ M and N𝑗 ∈ N+.

We are now in a position to define a derivative on bags of sequences. We will label this derivative 𝐷𝑐,
and refer to it as the 𝑐-derivative. Given a one-sequence bag M = *𝑀+, we define the derivative 𝐷𝑐 on M to
be the bag of all sequences obtained by dropping one element of the sequence 𝑀 . Thus, for example, given
the sequence 𝑥1𝑥2𝑥3𝑥4,

𝐷𝑐 * 𝑥1𝑥2𝑥3𝑥4+ = *𝑥1𝑥2𝑥3, 𝑥1𝑥2𝑥4, 𝑥1𝑥3𝑥4, 𝑥2𝑥3𝑥4 + . (3)

It is an easy exercise to check that this operation satisfies the Leibniz rule, namely that

𝐷𝑐 (M ◦ N) = (𝐷𝑐M) ◦ N ⊕ M ◦ 𝐷𝑐N . (4)

Note that if M and N are one-sequence bags, equation (4) is simply the statement that the deletions of the
concatenation of two sequences consists of all the deletions of the first sequence concatenated with the second
sequence combined with the first sequence concatenated with all the deletions of the second sequence. Note,
too, that the 𝑐-product is not commutative, so one must be careful to maintain the ordering in equation (4).
(For example, 𝐷𝑐 (M ◦M) = (𝐷𝑐M) ◦M ⊕M ◦ 𝐷𝑐M, but this cannot be simplified to 2M ◦ 𝐷𝑐M; this

Spector

520

is not special to the 𝑐-product, but arises naturally when products are non-commutative, and thus there is the
possibility that an object and its derivative might not commute.)

In other words, the operation we used in Baltimore deletions is the derivative operator on sequences. I
would suspect that most puzzlers who play with such word manipulations would have no idea that they were
calculating a derivative, but the operation in question is, mathematically, precisely such an operation.

To make this concrete, if we have the sequence “pear,” then

𝐷𝑐 * 𝑝𝑒𝑎𝑟+ = *𝑝𝑒𝑎, 𝑝𝑒𝑟, 𝑝𝑎𝑟, 𝑒𝑎𝑟 + . (5)

The goal of the Baltimore deletion puzzle, then, is to find words whose 𝑐-derivatives are bags all of whose
members are words. We will say that a sequence is 𝑐𝑤-differentiable if the sequence and all of the elements
of its 𝑐-derivative are words. (Formally, we would define a set 𝑊 to serve as the dictionary, and a word would
be any element of this set. One sees that the choice of 𝑊 is also implicit in these puzzles.)

Of course, this immediately invites new problems. For example, can one find words 𝑤1 and 𝑤2 that are
not only themselves 𝑐𝑤-differentiable, but for which 𝑤1 · 𝑤2 is also 𝑐𝑤-differentiable? Are there words that
are twice 𝑐𝑤-differentiable, which we will take to mean that all the sequences that arise from completing two
deletions are words? Notice that a word (sequence) can be twice 𝑐𝑤-differentiable but not 𝑐𝑤-differentiable
if all the double deletions are words, but not all the single deletions are. Note, too, that since we count
multiplicities, given an initial sequence all of whose characters are distinct, every element in the bag of
second 𝑐-derivatives will appear twice.

One could also define a restricted 𝑐-derivative, such as a restricted 𝑐-derivative that only executes
deletions on consonants, or vowels, or some other subset of the letters. Such a restricted derivative will
still satisfy the Leibniz rule, but would lead to a broader class of differentiable words (which in turn would
produce variations on the original word puzzle).

Finally, we note that the 𝑐-derivative bears a formal similarity to the type theory derivative defined by
McBride [3]. In that situation, however, one keeps track of the location of the holes left by deletion [2], and
the focus is on the derivative of the abstract type, rather than particular instances thereof.

Permutations, a New Derivative, and Baltimore Transdeletions

With the insights of the last section, we can now easily define a derivative appropriate to the second word
puzzle introduced above, namely, Baltimore transdeletions. We begin by thinking not about sequences
and subsequences, but rather the equivalence classes of all sequences with the same letters occurring with
the same multiplicities. Let us denote the equivalence class of, say, the sequence “cab” as ⟨𝑐𝑎𝑏⟩, and so
⟨𝑐𝑎𝑏⟩ = ⟨𝑏𝑎𝑐⟩ = ⟨𝑎𝑐𝑏⟩. We say an equivalence class is wordy if it contains at least one member that is
a word; thus ⟨𝑏𝑑𝑒⟩ is wordy (the letters can be rearranged to spell “bed”), but ⟨𝑏𝑑𝑒𝑘⟩ is not (there is no
English word consisting of precisely these four letters). If 𝑋 and 𝑌 are sequences, then we define the product
on equivalence classes in the natural way, such that ⟨𝑋⟩ • ⟨𝑌⟩ = ⟨𝑋 · 𝑌⟩.

We now define a derivative suitable to Baltimore transdeletions, which we call the 𝑝-derivative (due to
its association with permutations) and denote 𝐷 𝑝. Given a sequence 𝑋 , we define 𝐷 𝑝 * ⟨𝑋⟩+ to be the bag
containing all the equivalence classes of terms that arise in 𝐷𝑐 * 𝑋+. Formally,

𝐷 𝑝 * ⟨𝑋⟩+ = *⟨𝑢⟩|𝑢 ∈ 𝐷𝑐 * 𝑋 + + .

Thus, for example,
𝐷 𝑝 * ⟨𝑎𝑏𝑐𝑑⟩+ = *⟨𝑎𝑏𝑐⟩, ⟨𝑎𝑏𝑑⟩, ⟨𝑎𝑐𝑑⟩, ⟨𝑏𝑐𝑑⟩ + .

As this example shows, the generalization from the 𝑐-derivative to the 𝑝-derivative is exactly what one would
expect, once one shifts froms sequences to equivalence classes of sequences.

Derivatives Hidden in Word Puzzles

521

As in the previous case, it is an easy exercise to see that the 𝑝-derivative on bags of sequence equivalence
classes obeys the Leibniz rule, where the product and sum of bags is as before, although of course the elements
of the bags are now equivalence classes of sequences. (This derivative, too, is in the same family as the type
theory derivatives of [3].)

The goal of the Baltimore transdeletion puzzle, then, is to find wordy equivalence classes whose 𝑝-
derivatives are bags all of whose members are wordy. We will say that a sequence is 𝑝𝑤-differentiable if the
sequence and all of the elements of its 𝑝-derivative are wordy. Thus, with Baltimore transdeletions, we again
have a wordplay puzzle that is really an exercise in a kind of differentiation. Naturally, too, the 𝑝-derivative
structure invites the same sorts of questions as the previous case did, such as finding wordy equivalence
classes whose products are wordy, or considering multiple transdeletions to get higher 𝑝-derivatives.

In this vein, we note that the sequence ⟨𝑝𝑎𝑦𝑒𝑟⟩ is an example of an equivalence class that is not
𝑝𝑤-differentiable (the equivalence class ⟨𝑎𝑒𝑝𝑦⟩ is not wordy), but is twice 𝑝𝑤-differentiable; the second
𝑝-derivative of ⟨𝑝𝑎𝑦𝑒𝑟⟩ is the bag that consists of the following equivalence classes (each occurring twice),
all of which are wordy: ⟨𝑝𝑎𝑦⟩, ⟨𝑝𝑎𝑒⟩, ⟨𝑝𝑎𝑟⟩, ⟨𝑝𝑦𝑒⟩, ⟨𝑝𝑦𝑟⟩, ⟨𝑝𝑒𝑟⟩, ⟨𝑎𝑦𝑒⟩, ⟨𝑎𝑦𝑟⟩, ⟨𝑎𝑒𝑟⟩, and ⟨𝑦𝑒𝑟⟩. Note
that this phenomenon arises not because of the abstract structure of deletions and transdeletions, but because
of the additional constraint that our results be wordy.

Closing Thoughts

In this paper, we identified a hidden mathematical structure inside two standard pieces of wordplay. Both the
Baltimore deletion and Baltimore transdeletion rely on operations that can be understood as derivatives. The
𝑐- and 𝑝-derivatives satisfy the Leibniz rule, and have structural similarities to the type theory derivatives
introduced by McBride [3]. The word puzzles associated with Baltimore deletions and Baltimore transdele-
tions can thus be framed as problems in differentiability, where we include a requirement that the inputs and
output are all words (or permutations of words) in order for some input to be considered differentiable.

While it is not the point of this article to explore the wordplay side of these Baltimore-style puzzles,
it is worth mentioning that one can construct Baltimore deletion and transdeletion puzzles where instead of
sequences whose characters can be deleted, we have sentences whose words can be deleted, and the derivative
structure persists. Indeed, one could, in these scenarios, use equivalence classes based on pronunciation, so
that homophones (like “write,”, “rite,” and “right,” for example) would be interchangeable, and this would
not get in the way of being able to identify a derivative in this generalized context.

Presumably, there are interesting mathematical structures hiding in other word puzzles. If such structures
can be identified, it would be intriguing to see what kinds of further wordplay they might inspire. Also, given
that the process of deletions that has a long history in wordplay turned out be the key to formulating the zipper
technique [2] for working with data structures, one should be alert to possible data structure applications in
any new instances of mathematical structures embedded in word puzzles.

References

[1] R. Eckler. Making the Alphabet Dance, 1st ed. St. Martins Griffin, 1997.
[2] G. Huet. “The Zipper.” J. Functional Programming, vol. 7, no. 5, 1997, pp. 549–554.
[3] C. McBride. The Derivative of a Regular Type is its Type of One-Hole Contexts.

http://strictlypositive.org/diff.pdf
[4] National Puzzler’s League. 2008 Edition of the Online Guide to the Engima.

https://enigma.puzzlers.org/guide/remove
[5] Wordways archive. https://digitalcommons.butler.edu/wordways/all issues.html

Spector

522

http://strictlypositive.org/diff.pdf
 https://enigma.puzzlers.org/guide/remove
https://digitalcommons.butler.edu/wordways/all_issues.html

