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Abstract  

Two distinct pentagons are used in the formation for two series of artworks. One is derived as the limiting form of 

pentagons extracted from a spiral of triangles. The other is based on the Goldbach Conjecture.. 

 

A Spiral of Triangles 

 

   

Figure 1:  Spiral of Triangles. 

 

We begin with a known spiral of triangles. The spiral starts with three unit triangles, that is equilateral 

triangles of side length s = 1, and proceeds clockwise. The fourth triangle, of length s = 2,  occurs along the 

longest side of the original group of three and forms our first pentagon, whose longest side L is also of 

length 2, as shown in the centers in Figure 1. The next pentagon will have side length L = 3 and is formed 

by attaching another triangle with s = 2. Placing it on the left leads to a clockwise spiral. A right side 

placement would yield a counter-clockwise spiral. Next, a triangle with s = 3 makes a pentagon with L = 

4. And so on. Some measures for the first few triangles and pentagons are given in Table 1. P(n) is the side 

length of the nth triangle (beginning with n = 0 for historical reasons); a(n) is its area; A(n) is the 

accumulated area. 

   Table 1: Measures. 

 

n 0 1 2 3 4 5 6 7 8 9 10
P(n) 1 1 1 2 2 3 4 5 7 9 12
a(n) 1 1 1 4 4 9 16 25 49 81 144

A(n) 1 2 3 7 11 20 36 61 110 191 335
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Recurrence Relation for Lengths.  After the first few iterations, the matching side lengths, s of the 

triangles and L of the pentagons, grow according to the recurrence relation 

P(n) = P(n-2) + P(n-3),    for n = 3,4,5…, where P(0) = P(1) = P(2) = 1,  

 yielding the Padovan sequence [3], analogous to the Fibonacci sequence. This relation can be observed in 

the pentagons in Figure 1 as well as in the second row of Table 1.  

 

The Sequence of Pentagons 

As indicated above and shown in Figure 2 below, a sequence of pentagons are embedded in the spiral of 

triangles. Both the size and shape of the pentagons are of interest. 

The Area of the Pentagons. The areas of the successive triangles and pentagons will be expressed  in terms 

of unit triangles. Thus the area of the nth triangle is simply a(n) = P(n)2, as shown in the third row of Table 

1 above. 

The areas A(n) of the pentagons are summations of the areas a(n) and are given in the fourth row. A 

closed form for these sums can be observed from the geometry. For example, consider the entire area of the 

large pentagon in Figure 1. If we add a triangle with s = 5 to the top, a parallelogram is formed; its area is 

2 x 9 x 12 = 216. The leading factor of 2 comes from the fact that we’re counting unit triangle rather than 

unit squares. This area less 25, that of the added triangle, agrees with the 191 in Table 1. This generalizes, 

and can be proved by induction to give 

                           A(n) = 2 P(n) P(n+1) – P(n-2)2,   for n = 3,4,5,… . 

This formula for the sum of the squares of the first n+1 Padovan numbers is equivalent to the one in  OEIS 

[2,4].  

 

. 

Figure 2: Evolving Shapes. 

 

The Shape of the Pentagons. The shapes of the successive pentagons are highlighted in Figure 2, which 

suggests that there might be a limiting shape, with the same angles, as n grows without bound. To try to 

control for the growth in area, let’s first consider the values of the ratios of successive sides, that is P(n+1) 

/ P(n). As n grows, this ratio approaches a number approximately equal to 1.3247.  This limit is not entirely 

surprising. It can also be obtained from the recurrence relation for the Padovan numbers, whose 

corresponding characteristic equation  is  x3 =  x + 1.  The only real root of this is known as ρ (rho), 

sometimes referred to as the Plastic Ratio. 

       To be able to compare shapes we’ll normalize by dividing by some lengths. First, if we normalize the 

size of the limiting pentagon by dividing by its shortest side. Because of the common side ratio, the five 

sides in the limit must be 1, ρ, ρ2, ρ3, ρ4. Now, scale it and each of the first six pentagons by dividing their 

side lengths by the length of their perimeter. We can see the convergent of their shapes in Figure 3, which 

compares each of the first six pentagons to the limiting one. By the sixth pentagon the difference between 

it and the limit is barely visible. Figure 4a shows the relative sizes of the second through fifth pentagons. 

Figure 4b gives a tiling using the limiting shape. That shape needs a name. Plastic Pentagon? Rho Pentagon? 
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Figure 3: Convergence of Shapes. 

 

                                 

                                                           

(a)                                                            (b)                                                

Figure 4: Plastic Pair: (a) Sizes, (b) Tiling.                           

 

                                                       The Goldbach Pentagon 

The Goldbach Pentagon is similarly based on triangles, in this case isosceles right triangles rather than 

equilateral triangles. The famous unsolved Goldbach Conjecture claims that any even integer greater than 

two can be partitioned into the sum of two primes. Consider the grid in Figure 5a. It has 32 = 2×4×4 triangles 

as each of the 16 squares can be split into 2 such triangles. To achieve the desired balance between shape 

and space, 13 triangles were used for the shape and the remaining 19 for space.       

 

(a) (b)            

                            Figure 5: The Goldbach Pentagon: (a) basic pentagon, (b) mosaic. 
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                                                             Figure 6: Goldbach Tiling 

 

       An early mosaic pattern by the second author using this shape is shown in the right panel of Figure 5b.  

Figure 6 shows a larger painting (about 3’ by 5’) .  Although it’s not as obvious, the partitioning of 32 into 

13 plus 19 was used there as well. For more see [1]  

  

                                                       Summary and Conclusions 

Two different approaches were taken in converting triangles to pentagons. Beginning with a spiral of 

equilateral triangles we uncovered a sequence of pentagons which converge to a limiting shape in which 

the constant rho played an essential role. Also a formula for the sum of squares of the Padovan numbers 

was found. Beginning with a particular instance of the Goldbach partitioning, a series of paintings in which 

basic triangles were formed into pentagons and then into more elaborate shapes. 
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