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Abstract
A two-mirror laser scanner, utilising rotating mirrors to direct a fixed laser, generates a two-degree-of-freedom line
set: a two-mirror congruence. This congruence, formed by the rulings of coaxial hyperboloids, enables the creation of
diverse ruled surfaces. We present a user-friendly application for interactive mirror manipulation, allowing dynamic
animation and custom ruled surface generation.

Introduction

Ruled surfaces are surfaces that are swept by a straight line moving in Euclidean 3-space. A classic example
is a one-sheeted hyperboloid of revolution (Figure 1a), which is generated by rotating a line that is skew with
respect to the axis of rotation. They are the elementary ingredients of this article and will be briefly referred
to as “hyperboloids”. The rulers of a hyperboloid are said to have 1 degree of freedom, since each ruler is
determined by 1 parameter (the rotation angle of the sweeping line).

(a) (b) (c) (d)

Figure 1: (a) A one-sheeted hyperboloid of revolution, swept out by a skew line. (b) Water tower Château
d’eau des Essarts-le-Roi (Yvelines, France), image by Henry Salomé. (c) Two 3D printed

hyperbolic gears. (d) Spaghetti in a jar.

This shape has been the inspiration for various artists and architects. A nice treatise on this can be found
in the Bridges 2022 contribution by Frank A. Farris [3] and the 2023 contribution by George Hart [4]. We
can find hyperboloids in the construction of various towers (Figure 1b), hyperbolic gears (Figure 1c) and even
in spaghetti in a jar (Figure 1d). But our interest in hyperboloids is motivated by sensors and other devices
that make use of rotating lasers. Often, these laser lines are the reflections of a single fixed laser by one or
more rotating mirrors, popular for light effects at concerts or parties.

A two-mirror laser scanner controls an incoming laser by two rotating mirrors (around fixed device axes)
(Figures 2a and 2b). The set of outgoing laser lines is determined by the geometric setup of the incoming
laser and the two mirror axes. In classic geometry [6], such a line variety is called a line congruence, because
it has 2 degrees of freedom, in the sense that each of its lines is determined by the choices for both mirror
angles. In the specific case of doubly reflected laser lines we coin the term two-mirror-congruence.
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(a) (b) (c)

Figure 2: (a) Two mirrors guiding a laser beam. (b) Two mirrors in a Polytec Laser Doppler Vibrometer
Scanner PSV400. (c) 10 hyperboloids on a two-mirror-congruence with each 100 lines.

The visualisation of a two-mirror-congruence is discomforted due to the 2 degrees of freedom, resulting
in a sloppy haystack (Figure 2c). On the other hand, it provides an unlimited supply of ruled surfaces, each of
which is a subset of the congruence with 1 degree of freedom. We have already mentioned the hyperboloids
that are swept by fixing one mirror and rotating the other. But if we rotate both mirrors simultaneously, we
create more exotic, sometimes extremely beautiful ruled surfaces, swept by a line that hops between different
hyperboloids. In this work we propose a user-friendly application in which you can easily manipulate the two
rotating mirrors and observe the resulting outgoing lines.

The Mathematics

If a fixed incoming laser hits a mirror that continuously rotates around a fixed axis (contained in the mirror
plane), then it generates a set of reflected laser lines. Observe that the same line variety is obtained by rotating
one selected laser line around the given mirror axis, rather than rotating the mirror. This implies that the
reflections of one fixed laser by one rotating mirror sweep a ruled surface of revolution, being a hyperboloid
in general. In a two-mirror laser scanner, the first rotation angle 𝛼 determines the first laser reflection,
and hence the incoming ray on the second mirror, yielding a ruled surface of revolution when rotating this
second mirror. Consequently, in general, a two-mirror-congruence can be partitioned into a family of coaxial
hyperboloids, with the common axis of revolution equal to the rotation axis of the second mirror.

In this section, we sketch the procedure to compute subvarieties of this two-mirror-congruence from a
user-guided trajectory of angle pairs. For a more profound background and mathematical proofs we refer to
our previous work [5].

1. For each mirror, we select and fix three angles of rotation: {𝛼1, 𝛼2, 𝛼3} for the first, and {𝛽1, 𝛽2, 𝛽3} for
the second mirror. Each of these triples can be represented by three points on two circles. (𝐴1, 𝐴2, 𝐴2)
on the “𝛼-circle” and (𝐵1, 𝐵2, 𝐵3) on the “𝛽-circle”.

2. The rotation of the two mirrors corresponds to the motion of a point 𝐴 on the first circle and of a point
𝐵 on the second circle. The chosen triple bases of angles (or circle points) enable us to express each
mirror position as a linear combination,

𝐴 = 𝑥𝑎𝐴1 + 𝑦𝑎𝐴2 + 𝑧𝑎𝐴3, (1)
𝐵 = 𝑥𝑏𝐵1 + 𝑦𝑏𝐵2 + 𝑧𝑏𝐵3, (2)
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with 𝑥𝑎 + 𝑦𝑎 + 𝑧𝑎 = 𝑥𝑏 + 𝑦𝑏 + 𝑧𝑏 = 1. Furthermore, these circle relations apply directly to the
corresponding outgoing lasers.

3. The two selected triple bases imply 9 combinations of angle pairs (𝛼𝑖 , 𝛽 𝑗), each of which determines
an outgoing laser 𝐿𝑖 𝑗 . In a preprocessing phase, we measure or virtually compute these 9 lines and
represent them by a 6-vector of (normalised) Plücker coordinates. Now we can generate each line of
the two-mirror-congruence as a linear combination of these 9 Plücker vectors.

4. Manipulating both mirrors yields trajectories 𝐴(𝑡) and 𝐵(𝑡) on both circles. The corresponding (time-
varying) coefficients in the relation of Eqn. 2 are copied and applied to the Plücker vectors that represent
the basis of the 9 lines 𝐿𝑖 𝑗 ,

𝐿1 = 𝑥𝑏 (𝑡)𝐿11 + 𝑦𝑏 (𝑡)𝐿12 + 𝑧𝑏 (𝑡)𝐿13,

𝐿2 = 𝑥𝑏 (𝑡)𝐿21 + 𝑦𝑏 (𝑡)𝐿22 + 𝑧𝑏 (𝑡)𝐿23,

𝐿3 = 𝑥𝑏 (𝑡)𝐿31 + 𝑦𝑏 (𝑡)𝐿32 + 𝑧𝑏 (𝑡)𝐿33,

generating the outgoing laser 𝐿 by means of Eqn. 1:

𝐿 = 𝑥𝑎 (𝑡)𝐿1 + 𝑦𝑎 (𝑡)𝐿2 + 𝑧𝑎 (𝑡)𝐿3.

The Application

We built the application in the game engine Unity (version 6.0) and opted for a browser app, which we
published on the gaming platform itch.io [1] (will be made public upon publication of this paper). The nine
lines needed in the procedure explained above are the result of reflected raycasts calculated by Unity’s physics
engine. These 3× 3 lines and corresponding {𝛼1, 𝛼2, 𝛼3} and {𝛽1, 𝛽2, 𝛽3} angles are then used to calculate a
new line for any given pair (𝛼𝑛𝑒𝑤 , 𝛽𝑛𝑒𝑤). We do this for every combination of integer 𝛼- and 𝛽-values from
zero to 360. This yields a 360 × 360 set of lines.

We allow the user to control the angular velocities 𝜔𝛼 and 𝜔𝛽 of the two rotating mirrors by means of
two sliders. Setting them both to zero means observing a fixed set of mirror angles 𝛼 and 𝛽 thus a fixed
straight line on the two-mirror-congruence. Setting one to a non-zero value means the resulting line rotates
around its axis at the given angular velocity. Making both angular velocities non-zero results in a line that
travels on the two-mirror-congruence. This means continuously changing hyperboloids at a rate 𝜔𝛼 and
travelling on those hyperboloids at a rate 𝜔𝛽 . This allows a user to come up with all kinds of interesting
traces of a straight line through 3D space, and a very rich generation of animated patterns. The result is
always a ruled surface, as we only work with straight lines in 3D space. Some interesting examples are given
in Figure 3.

Summary and Conclusions

We presented an application to visualise the set of straight lines that lie on a two-mirror-congruence. We hope
this will serve as inspiration to artists creating DJ background walls, designing laser shows, or producing VJ
loops, as well as those making abstract expositions with straight lines. We invite everyone to send us their
creations by posting them online (YouTube, Instagram,... ) and emailing us the link. Please make sure to
mention both the Bridges 2025 conference and this article.

Future work includes the manipulation of the mirror rotation axis, which means altering the two-mirror-
congruence itself. Another interesting approach would be the manipulation of line elements instead of
lines [2]. These consist of both a line and a point on them and thus describe point clouds with normal vectors.
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Figure 3: Some examples of ruled surfaces produced by our app.
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