
The Unknot Game

Cameron Browne

Smart Games, Kontich, Belgium; cambolbro@gmail.com

Abstract

Unknot is a hyper-casual video game in which players are presented with convoluted drawings of the unknot (i.e. the
trivial knot or plane circle) which they must undo with as few moves as possible. The game serves a serious purpose
as a research tool for investigating the visual presentation of mathematical knots, by correlating player performance
with knot drawing metrics to identify practical guidelines for the effective presentation of knots. This work involved
devising a new approach for generating and smoothing knot diagrams at interactive speeds, and implementing two
special knot moves aimed to be intuitive for players. Cognitive Load Theory (CLT) informs both the design of the
game and the drawing of the knots, to minimise factors that might otherwise mask the effects being investigated.

Visualising Mathematical Knots

Knot theory has been an active field of research for over a century with more than a million related publica-
tions [13], most of which are illustrated. However, there has been surprisingly little investigation into how
mathematical knots might be best visually presented to make them most comprehensible to the viewer.

Figure 1: Drawings of knot 84 from significant knot tables.

Consider Figure 1, which shows drawings of the knot denoted 84 from some of the most historically
significant knot tables throughout the literature. It is encouraging that this knot is consistently shown in the
same basic form – which is not always the case! – but note that the 1926 drawing by Alexander and Briggs
(from [1, p. 583]) contains an error and only has seven crossings. It is remarkable that such an error can
occur for such a simple knot, even in fundamental work by pioneers of the field.

Figure 2 shows the topologically distinct combinatorial embeddings of this knot’s underlying abstract
graph, each obtained by choosing a particular face (i.e. region) as perimeter. Any of these embeddings may
be chosen to draw the knot, which raises the question: which embedding is most comprehensible for the
viewer and therefore less likely to cause visual misinterpretations and misclassifications?

Figure 2: Topologically distinct embeddings of knot 84. Which is visually simplest?

Bridges 2025 Conference Proceedings

45

Embedding (d) as shown in most knot tables highlights the knot’s twist regions , which may be meaningful
to knot theorists, but embedding (a) with its more regular layout may appear visually simpler to the lay
observer. These embeddings are in fact listed in order of visual complexity according to three simple rules
suggested in a previous Bridges paper [4], which are to maximise: 1) the number of perimeter crossings,
2) internal symmetry, and 3) perceived perimeter continuity. It is tempting to empirically test these ideas
with a visual questionnaire, but such qualitative approaches often prove unreliable for visual domains [5].

Instead, consider the observation by De Toffoli and Giardino that knot diagrams are dynamic forms
that invite the viewer to mentally apply the inherent moves [6]. It is a logical next step to present knots as
interactive games that players can virtually manipulate, potentially providing insight into their understanding
of the knots and allowing quantitative testing for effects of knot presentation on player performance.

The Unknot Game

Unknot is a hyper-casual video game in which players are presented with convoluted forms of the unknot
(i.e. the trivial knot or plane circle) that they must undo to a circle with as few moves as possible. Figure 3
shows how challenges may be presented to the player (this is a “hard unknot” from Tuzun and Sikora [17]).

Figure 3: Game view of the Tuzun-Sikora unknot.

Each turn the player selects a point on the knot path, following which the move that most simplifies
that local part of the knot is applied (if any) to remove as many crossings as possible, then the diagram is
re-smoothed. If there is more than one such move, then the move that travels over the least area is made. This
process is repeated until all crossings are removed and the knot is reduced to a circle in the plane.

The game is designed to make moves easy and engaging; each move can resolve large parts of the knot
in surprising ways and produce a hypnotic effect as the diagram re-smooths itself, providing micro-rewards
for the player. Most challenges can be solved with a few carefully chosen moves and games are quick.

Cognitive Load Theory

In attempting to gauge the player’s understanding of a knot from their performance in the game, it is useful
to consider the cognitive load (CL) experienced with each challenge. Cognitive load theory (CLT) examines
the use of working memory when performing cognitive tasks [15] and distinguishes three main types of CL:

1. Intrinsic: Cognitive load due to the inherent complexity of the task.
2. Extraneous: Cognitive load due to the way the task is presented, especially nonessential components.
3. Germane: Learning schema (strategies) about the task to help reduce intrinsic cognitive load.

Browne

46

CLT informs the design of the game and its user interface (UI) to minimise CL experienced by the player
and strip away superfluous elements that might otherwise mask the effects being investigated. The game has
a minimal interface and intuitive moves so the player can fully concentrate on understanding the knot in front
of them. CLT also informs the drawing styles in which knots are rendered, and highlights the competing
objectives of visual simplicity (to minimise extraneous CL) and visual richness (to enhance the experience
and allow the formation of germane strategies). These points are elaborated in the following sections.

Slip and Shrink Moves

Figure 4 shows the famous Reidemeister moves from classic knot theory [12], which are atomic moves that
safely transform one knot diagram into another without modifying the underlying knot type. While these
moves allow any convoluted diagram of the unknot to be reduced to a plane circle, their application can be
non-intuitive, especially for hard unknots that require a complicating move before they can be simplified [10].

Type 1 Type 2 Type 3

Twist

Untwist

Poke

Unpoke
Slide

Figure 4: The three types of Reidemeister move.

Instead, the Unknot game uses two special moves dubbed “Slip” and “Shrink” that condense multiple
Reidemeister moves into more convenient compound moves intended to be more intuitive for players. These
respect the notion of element interactivity from CLT, which dictates that the number of component elements
in a cognitive task and the way they interact affect the intrinsic cognitive load [16].

Figure 5: A simplifying Slip move. Figure 6: A Shrink move (always simplifies).

The Slip move (Figure 5) involves slipping a consecutive run of arcs past itself or any number of other
arcs that can be cleanly separated into distinct “over” and/or “under” layers, such that no arcs straddle both
layers (the Poke, Unpoke and Slide are special cases). The Shrink move (Figure 6) is similar to a Slip move
except that the moving run shrinks to a point where it crosses itself (the Untwist is a special case).

Similar moves have already been proposed; the Shrink move is equivalent to the 𝑍1 move described
in [11] and the Slip move is essentially a merger of the 𝑍2 and 𝑍3 moves but in which only a single run –
selected by the player – actually moves. These compound moves reduce the number of trivial actions required
to simplify the diagram, allowing the player to focus their mental effort on deciding which moves to make.

The 𝑍 moves1 described in [11] efficiently resolve all diagrams of the unknot to which they’ve been
applied, even hard unknots, with monotonically non-complicating moves. For example, the hard unknot
shown in Figure 7, called the Monster, requires ten Reidmeister moves to resolve – the first of which adds two
crossings [14] – but can be resolved with only three 𝑍 moves (or two Slips and a Shrink) as shown. Note that
only simplifying Slip and Shrink moves are implemented in the game, to focus the task of the player, so some
unknot diagrams will not be resolvable with the available moves; such cases are pre-tested and discarded.

1 Together with accompanying moves denoted 𝐶 and �̃� to handle special cases.

The Unknot Game

47

Figure 7: Resolving the Monster with two Slips and a Shrink.

Triangular Grid Diagrams

Each knot is represented internally as a signed Gauss code which lists its crossings in order of traversal with
underpasses negated. From the Gauss code, it is straightforward to obtain the knot’s underlying 4-valent
abstract graph, in which each edge is an arc between consecutive crossings, using an algorithm described by
Kauffman [9] and due to Dehn [7]. Choosing a face in this graph as perimeter constitutes a combinatorial
embedding (as shown in Figure 2) but its geometric embedding in the plane is yet to be determined.

A grid diagram is obtained for each knot using a Monte Carlo Tree Search (MCTS) approach [3] in
which the faces of the abstract graph are iteratively added to a triangular grid, from the largest deepest
face outwards, using semi-random simulations. This forward model grows diagrams without the need for
expensive geometric error checks and corrections, and the triangular grid offers a good balance between
growth freedom and curve fairness, making the process fast and robust. Figure 8 (a) shows a triangular grid
diagram obtained for the example shown above. The algorithm will be fully described in a separate article.

9

10

4

2

3

7 1

8

5

6

9

10

4

2

3

7 1

8

5

6

1

3

4

6

8 9

2

10

7

5

(a) (b) (c)

Figure 8: Triangular grid diagram, control polygon and smoothed control polygon.

The grid diagram has 4-valent vertices at the knot’s crossings and 2-valent vertices along the arcs between
crossings, and is converted directly into a control polygon that describes the knot path (b) with coincident
vertices at the crossing points where it self-intersects. This control polygon is then smoothed as the player
watches to give the drawing’s final relaxed shape (c) as described below. Importantly, the triangular grid
diagram layout closely matches the final relaxed shape, which minimises the amount of smoothing required.

Control Polygon Smoothing

The smoothing step relaxes the knot’s control polygon into an aesthetically pleasing shape that minimises
curvature and maximises the even spread of arcs across the drawing area. Smoothing is performed over a
number of iterations in which the location of each vertex𝑉 𝑗 is adjusted to a more desirable position according
to the following properties, until the total displacement falls below a certain threshold:

Browne

48

1. Step Length: Each vertex 𝑉 𝑗 tries to make the lengths of its two incident edges match. This is
approximated by adding to 𝑉 𝑗 a displacement equal to the displacement between its projection 𝑃 𝑗 onto
the short diagonal 𝑉 𝑗±1 between its previous and next vertices and the midpoint 𝑀𝑖𝑘 of this short
diagonal (Figure 9). This matches incident edge lengths without collapsing each 𝑉 𝑗 inwards.

2. Curvature: Each vertex 𝑉 𝑗 tries to make its curvature match the average curvature of its previous and
next vertices. This is approximated by adding to𝑉 𝑗 a displacement that would move it to the point along
its projection onto its short diagonal 𝑉 𝑗±1 that is the same distance from this line as the average of the
distances of the previous and next vertices from their short diagonals 𝑉𝑖±1 and 𝑉𝑘±1 (Figure 10).

3. Proximity: Each vertex 𝑉 𝑗 is displaced away from the closest point on any line segment along the other
arcs in its two incident faces, by an amount proportional to the inverse square of its distance (except
for crossing vertices, which take the average displacement of their four adjacent neighbours). This
encourages the polygon to spread evenly across the drawing area.

4. Frame: Each vertex𝑉 𝑗 is displaced away from the closest edge of the view frame (horizontal or vertical)
an amount proportional to the inverse of its distance. This encourages the polygon to fit the view frame.

V

V

VM P

V’

i

j

k

j

ik j

Figure 9: Smoothing by step length.

V

V

V

V

V

V’

h

i

j

k

l

j

()

2

d d

 d + d

i k

i k

Figure 10: Smoothing by curvature.

The displacements for each vertex𝑉 𝑗 are accumulated over all calculations, averaged with their previous
and next vertices, then clamped at 45% of the distance to the nearest other point before being applied. This
minimises the danger of displacements creating accidental self-intersections in the control polygon, to the
extent that it has proven unnecessary to even check for these during the smoothing process. The two coincident
vertices at each crossing are both displaced by the average of their amounts to keep them coincident.

After all displacements have been applied, the updated polygon is corrected for drift and spin, then at
regular (but staggered) intervals the number of vertices in each arc is checked and adjusted if needed. For
each arc 𝐴𝑛, a vertex is inserted or removed if its number of vertices |𝐴𝑛 | differs from the expected number
given by its geometric length | |𝐴𝑛 | | divided by the polygon’s average edge length 𝐿𝑎𝑣𝑔. This smoothing
process is approximate but produces good results and converges quickly in practice.

Curve Generation

The knot is finally drawn, as shown in Figure 11, using cubic B-Spline curves offset from the main control
polygon (a). For each vertex 𝑉 𝑗 , an offset distance 𝑜 𝑗 is calculated based on its proximity to the nearest
other point, and left and right offset points are then generated for 𝑉 𝑗 perpendicular to its short diagonal, to
create left (green) and right (red) offset control polygons (b). The two cubic B-Spline curves defined by these
offset control polygons describe the path borders of the final knot shape to be drawn (c). The curves are
approximated by their control polygons rather than interpolated through them to avoid undue oscillations.

An overpass region is created for each crossing from the four curve sections that enclose it, inflated by a
small amount to hide underlying visual artefacts. When the knot is drawn, each overpass obscured by another
part of the path is redrawn after being clipped to its overpass region, to correctly draw all overpasses.

The Unknot Game

49

1

3

4

6

8 9

2

10

7

5

1

3

4

6

8 9

2

10

7

5

1

3

4

6

8 9

2

10

7

5

(a) (b) (c)

Figure 11: Main control polygon, offset control polygons and final offset B-Splines.

Rendering Styles

The Unknot game provides a number of rendering styles to not only cater for players’ personal tastes but
to explore the possible relationship between drawing style and player performance. These include the
monochrome styles shown in Figure 12: flat fill with overpass borders excised, flat fill with dark borders, and
hatched shading to enhance the 2.5D over/under effect.

Figure 12: Monochrome rendering styles: excised, bordered, and hatched.

A variety of rainbow scale styles, which colour the knot path as a gradient through the hue component
of the HSV colour space, are also provided (Figure 13). The rainbow scale is problematic for scientific
visualisation [2] but works well as a visual cue to help distinguish sections of the knot path, thus facilitating
new germane strategies at the cost of additional extraneous CL. The rainbow scale also allows the convenient
identification of landmarks, e.g. the solution shown in Figure 7 could be described as “pink, red, orange”.

Figure 13: Rainbow scale rendering styles: flat, hatched, and hatched with underpass darkening.

Variable offsetting can be used to thicken the knot path based on local proximity to give a “fun” organic
game-like look, which fills the view frame more evenly without cluttering the busier parts of the drawing.
The player can turn this off to give a (thin) constant width path for a more classic look (as per Figure 2).

Browne

50

Challenge Generation

For each challenge in the game, a knot of appropriate difficulty is chosen at random from a pre-generated
database, then perimeter face and writhe also chosen at random. Challenges are generated for a given number
of crossings 𝐶 and repetition count 𝑅 by starting with the unknot’s Gauss code (an empty string “”) and
applying semi-randomly chosen Reidemeister moves to it. Complicating moves are chosen with higher
frequency while the code contains fewer than 𝐶 crossings and simplifying moves are chosen with higher
frequency while the code contains more than 𝐶 crossings. This process continues until the 𝑅𝑡ℎ time that the
code contains exactly 𝐶 crossings (with Twists removed), after overshooting and compensating several times.

The program then tests whether each resulting knot can be unknotted using only simplifying Slip and
Shrink moves and discards those that cannot. Generating challenges with Reidemeister moves but then testing
them with simplifying Slip and Shrink moves increases the variety of challenges and reduces the occurrence
of obvious solutions that simply reverse their generating sequence. Each challenge’s difficulty is estimated
by its number of crossings (inherent CL), minimum solution length (compressibility) and number of optimal
moves compared to possible moves (tension). Each challenge’s quality is estimated by its variation from a
strict over/under weave (alternation) and the degree to which optimal moves are non-obvious (obfuscation).

Challenges are stored to file using the compact alphabetic Dowker Thistlethwaite (DT) format that
assigns a letter to each crossing with case indicating sign [8], but extended with numeric superscripts that
indicate multiples of 26 to add (to support more than 26 crossings). For example, the alphanumeric DT code
for the Monster shown in Figure 7 is “BFIGHAJDCe”.

Performance

The following timings indicate the running speed of a Java prototype of the Unknot game for mid-range knots
with 25 crossings (challenges will range from 1 to 50 crossings). These approximate timings were taken on
a standard consumer machine (Apple Mac Air with M3 chip and 16 GB RAM) performing drawing tasks in
the foreground (UI) thread and non-trivial calculations in background (worker) threads:

• Grid diagram generation ∼20 ms.
• Control polygon smoothing ∼0.1 ms per iteration over ∼1,200 iterations (∼150 vertices).
• Move generation ∼30 ms.
• Drawing to screen ∼40 ms (1,600 x 1,200 pixels, rainbow scale with hatching and underpass darkening).

Most of the challenges tested loaded, smoothed and generated moves in under 1 second with an animation
rate of ∼20 fps, which is an interactive speed suitable for real-time play. Future speed improvements might
be achieved by delegating smoothing calculations to the GPU to perform in parallel on a per-vertex basis.

Future Work

A core aim of this project is to investigate the following research questions:

RQ 1 What effect does embedding choice have on player performance in unknotting?
RQ 2 What effect does rendering style have on player performance in unknotting?

Anonymised play traces will be collected from players who agree to this, with each game played
generating several data points. Indicators of player performance include the time taken per turn, success rate,
number of undos/restarts/exits, etc. There will be no longitudinal study so data can be fully anonymised.

Player performance will be correlated with the variables involved – chosen embedding and writhe,
diagram geometry, symmetry, rendering style, etc. – to address the research questions. Expected outcomes
include guidelines for choosing the optimal embedding of knots and presenting them effectively. RQ 1 is the
central research question but RQ 2 can also be investigated with the same data at little additional cost.

The Unknot Game

51

Summary and Conclusion
While originally intended as a meditative art piece, the Unknot game has taken on a serious purpose as
a research tool for investigating the visual perception of mathematical knots. The game is intended to be
engaging and entertaining, while at the same time collecting anonymised play traces from consenting players
to explore the research questions. This will hopefully suggest guidelines for the effective presentation of knots
in order to minimise their perceived visual complexity and reduce the potential for misinterpretations in what
is already a visually confusing topic. This paper describes a complete approach for producing aesthetically
pleasing knot drawings in real time, which could have broader artistic applications beyond the game described
here. Unknot is planned for release in the second half of 2025 for web browsers and mobile devices.

Acknowledgements
Thanks to Rolf Vandoren from Smart for supporting this work. Thanks also to Frederic Maire, Stephen
Tavener, Alain Brobecker, Néstor Romeral Andrés, Helen Gilbert and the anonymous reviewers for feedback.

References
[1] J. W. Alexander and G. B. Briggs. “On Types of Knotted Curves.” Annals of Mathematics, vol. 28,

no. 1/4, 1926–1927, pp. 562–586.
[2] D. Borland and R. M. Taylor. “Rainbow Color Map (Still) Considered Harmful.” IEEE Computer

Graphics and Applications, vol. 27, no. 2, 2007, pp. 14–17.
[3] C. Browne, et al. “A Survey of Monte Carlo Tree Search Methods.” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 4, no. 1, 2012. pp. 1–43.
[4] C. Browne. “Nice Knots.” Bridges Proceedings, Aalto, Finland, Aug. 1–5, 2022, pp. 309–312.

https://archive.bridgesmathart.org/2022/bridges2022-309.html.
[5] Z. Bylinskii, et al. “Towards Better User Studies in Computer Graphics and Vision.” Foundations and

Trends in Computer Graphics and Vision, vol. 15, no. 3, 2023, pp. 201–252.
[6] S. De Toffoli and V. Giardino. “Forms and Roles of Diagrams in Knot Theory.” Erkenntnis, vol. 79,

no. 4, 2014, pp. 829–842.
[7] M. Dehn. “Über Kombinatorische Topologie.” Acta Mathematica, Vol. 67, 1936, pp. 1213–1268.
[8] J. Hoste, M. Thistlethwaite and J. Weeks. “The First 1,701,936 Knots.” The Mathematical

Intelligencer, vol. 30, no. 4, 1998, pp. 33–48.
[9] L. H. Kauffman. “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras.” Reviews in

Mathematical Physics, vol. 5, no. 4, 1993, pp. 735–773.
[10] L. H. Kauffman and S. Lambropoulou. “Hard Unknots and Collapsing Tangles.” Knot Theory and its

Applications to Physics and Biology, Trieste, Italy, May 11–29, 2009, pp. 1–62,
[11] C. Petronio and A. Zanellati. “Algorithmic Simplification of Knot Diagrams: New Moves and

Experiments.” Journal of Knot Theory and Its Ramifications, vol. 25, no. 10, 2016, p. 1650059.
[12] K. Reidemeister. Knotentheorie. Springer, Berlin, 1932.
[13] P. E. Santos, P. Cabalar and R. Casati. “The Knowledge of Knots: An Interdisciplinary Literature

Review.” Spatial Cognition & Computation, vol. 19, no. 4, 2019, pp. 334–358.
[14] R. G. Scharein. Interactive Topological Drawing. PhD Thesis, University of British Columbia, 1998.
[15] J. Sweller. “Cognitive Load Theory, Learning Difficulty, and Instructional Design.” Learning and

Instruction, vol. 4, no. 4, 1994, pp. 295–312.
[16] J. Sweller. “Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load.”

Educational Psychology Review, vol. 22, 2010, pp. 123–138.
[17] R. E. Tuzun and A. S. Sikora. “Verification of the Jones Unknot Conjecture up to 22 Crossings.”

Journal of Knot Theory and its Ramifications, vol. 27, no. 3, 2018, pp. 1840009 (18 pp.).

Browne

52

https://archive.bridgesmathart.org/2022/bridges2022-309.html

