
Reformulating Multiplication for Mandelbrot-like Sets in 3D

Eric Zimmermann1 and Stefan Bruckner2

Institute for Visual & Analytic Computing, University of Rostock, Germany
1e.zimmermann@uni-rostock.de, 2stefan.bruckner@uni-rostock.de

Abstract
The Mandelbrot set, named after Benoı̂t Mandelbrot, led to a broad range of research as well as inspiring and appealing
results. Even though there is no analogue description in 3-space, several extensions were considered. In this article,
we recall the spherical representation and discuss a possible reformulation of trigonometric functions to improve the
rendering performance. Afterwards, we set up a multiplication in 3-space, motivated by the cross product and its
relation to differential forms. These provide the possibility to choose two functions as coefficients to achieve a varying
multiplication in space, which we experimentally investigate using two iteration schemes and several function pairs.
Finally, we turn to Julia sets, which can be achieved due to a minor change in the usual Mandelbrot iteration scheme
and we explore examples w.r.t. function and constant choices.

Spherical Representation in 3D

The Mandelbrot set (see Figure 1a), introduced by Benoı̂t Mandelbrot, has captivated mathematicians and
inspired computer artists since the 1980s, providing a visually intriguing foundation for generative art.
The accessibility of computational tools allowed artists to explore and visualize complex fractal structures,
significantly enriching the field of digital aesthetics and computer-generated art [7]. This paper builds on
these foundations with the aim of expanding the design space in order to offer artists and researchers enhanced
possibilities for creative experimentation.

The Mandelbrot set consists of all the points � in the complex plane for which the scheme ��+1 → �2
� + �

with � ∈ N0 and starting value �0 = 0 is bounded. Various approaches to explore analogues and variations
in 3D led to very interesting and visually appealing results like the Mandelbulb or projections of Quaternion
Julia Sets into 3D [2].

(a)

Im

Re

�1�2

�1�2

�1 + �2

�1
�2

�1 �2

�2 �1

(b)

z

x

y

�

�

�̃

�

�

�

(c)

Figure 1: (a) shows a rendering of the Mandelbrot set in the complex plane after 20 iterations, (b) an
illustration of the rotation and stretching performed during complex multiplication, and (c)

entities used in the spherical representation in 3D.

Bridges 2025 Conference Proceedings

373

(a) (b) (c) (d)

Figure 2: Renderings of two versions of the multiplication using spherical coordinates in 3D from two
viewpoints each. The second version carries − sin(�1 + �2) in the third coordinate in

Equation (2). Note that the viewpoints are similar for (a) and (c) as well as (b) and (d).

One such extension to 3D was proposed by Daniel White in 2007 [2] using spherical coordinates to
imitate the behavior of the multiplication in the complex plane, which can be given for two numbers �1, �2 ∈ C
in the complex plane C as

�1�2 = (�1 + ��1) (�2 + ��2) = �1�2 − �1�2 + �(�1�2 + �2�1)

representing � � = � � + �� � , � = 1, 2, with real and imaginary parts � � and � � , respectively, or

�1�2 = �1 exp(��1)�2 exp(��2) = �1�2 exp(�(�1 + �2))

in polar form using � � = � � exp(�� �), � = 1, 2, with absolute values � � (individually also known as modulus
or magnitude) and arguments � � . The polar form provides a way to interpret the multiplication as a rotation
(adding the arguments) and stretching (multiplying the absolute values) in the complex plane, see Figure 1b.
The extension in 3D makes use of two (angular) arguments � and � to reflect the rotational part. For a point
� = (�, �, �) ∈ R3 we can obtain the absolute value � ∈ R≥0 and arguments � ∈ [−�, �] and � ∈ [−�/2, �/2]
by

� =
√
�2 + �2 + �2, � = arctan2(�, �), and � = arcsin(�/�), (1)

where arctan2 gives the angular argument � in the ��-plane between −� and � except for the undefined case
in which � = � = 0 and arcsin provides the opening angle � above the ��-plane when � > 0, see Figure 1c.
The multiplication of two points �1, �2 ∈ R3 can then be written as

�1�2 = �1�2
��
�

cos(�1 + �2) cos(�1 + �2)
sin(�1 + �2) cos(�1 + �2)

sin(�1 + �2)

��
�
. (2)

This representation corresponds to the one used by Barrallo [2], whereas another common representation
interchanges cos(�1 + �2) with sin(�1 + �2) and vice versa and is therefore another parametrization caused
by a parameter shift.

As the complex plane and R3 have componentwise addition, we get the iteration scheme

��+1 = �2
� + �

with starting value �0 = (0, 0, 0), � ∈ R3, and � ∈ N0. The divergence condition, in which point � does not
belong to the set if for some � the absolute value of �� is greater or equal to 2, applies as well [2]. Figure 2
shows renderings also discussed by Barrallo [2].

Zimmermann and Bruckner

374

Rendering in 3D
The included 3D renderings were generated with GPU-based raymarching implemented using the web-based
3D eninge babylon.js. The full source code is avaiable on GitHub [10]. We use an initial step size 𝜀 ∈ R≥0
and employ the clarity function (Equation (16)) in Hart et al. [6] to adjust the sampling resolution using the
parameters 𝛼 ∈ R≥0 and 𝛿 ∈ {0, 1, 2}. Note that we do not use the distance estimator from Equation (8) in
Hart et al. [6], also used by Crane [5], because it is not clear whether such estimator is applicable in our
scenario involving the upcoming multiplication changes and the variants of iteration schemes. Instead we
use constant step sized raymarching with initial value 𝜀 and we allow step size changes caused by the clarity
function which scales the Euclidean distance from the eye to the current location on the ray [6]. Each ray is
intersected with a sphere of radius 𝔯 ∈ R≥0, the escape radius, and this radius is also used for the divergence
condition. Further, we declare the maximal number of iterations 𝔦 ∈ N0. The default values are 𝜀 = 5.𝑒 − 5,
𝛼 = 𝜀, 𝛿 = 1, 𝔦 = 10, and 𝔯 = 2 and deviations from those are mentioned accordingly. In particular, varying
the escape radius enables the rendering of larger objects whose geometry is not strictly tied to the conventional
value of 2, especially in the context of the modified iteration and multiplication schemes introduced later.
For the shading we make use of the normal estimation by central differences also used by Crane [5], in which
we find 6 points around the point in question, which we process in the same respective scheme with 10
iterations each to obtain an approximated normal. The distance to the 6 neighboring points is taken w.r.t. the
distance obtained by the clarity function [6]. For the color at a point 𝑝, we normalize the vector 𝑓 (𝑝) × 𝑔(𝑝)
(explained in the upcoming reformulation of the multiplication), modify it s.t. its entries lie in [0, 1], and
use it to assign RGB values. In this way, a color indicates in which direction the vector shows and repeating
color patterns around a point, for instance in Figure 2b, could reflect properties of multiplicities around poles
or zeros encoded in domain coloring [8]. The final color values are then determined by the Phong reflection
model.

Reformulations of the involved computations—like using polynomials [1, 2, 9]—can improve the render-
ing performance. To circumvent the evaluation of trigonometric functions in Equation (2) and the calculation
of inverses from Equation (1), our rephrasing makes use of the definition of the angle 𝛼 between vectors 𝑣1, 𝑣2
defined as cos(𝛼) =< 𝑣1, 𝑣2 > /(∥𝑣1∥ ∥𝑣2∥) (using the scalar product < ·, · > and the Euclidean norm ∥·∥)
and the addition theorems for the cosine and sine equations. Suppose we are given the two points 𝑝1, 𝑝2 ∈ R3

with absolute values 𝑟 𝑗 =
𝑝 𝑗

, normalized representatives 𝑣 𝑗 = 𝑝 𝑗/𝑟 𝑗 = (𝑣𝑥
𝑗
, 𝑣

𝑦

𝑗
, 𝑣𝑧

𝑗
)𝑇 and normalized

projections �̃� 𝑗 = (𝑣𝑥
𝑗
, 𝑣

𝑦

𝑗
, 0)𝑇/

(𝑣𝑥𝑗 , 𝑣𝑦𝑗 , 0) for 𝑗 = 1, 2, see also Figure 1c. Note that here we used the
superscript to identify the coordinates. Now we are able to write the trigonometric terms in Equation (2) as

cos(𝜑1 + 𝜑2) = cos(𝜑1) cos(𝜑2) − sin(𝜑1) sin(𝜑2)
=< �̃�1, 𝑣𝑥 >< �̃�2, 𝑣𝑥 > − < �̃�1, 𝑣𝑦 >< �̃�2, 𝑣𝑦 >

= �̃�𝑥1 �̃�
𝑥
2 − �̃�

𝑦

1 �̃�
𝑦

2 ,

cos(𝜃1 + 𝜃2) =
(
𝑣𝑥1 �̃�

𝑥
1 + 𝑣

𝑦

1 �̃�
𝑦

1
) (
𝑣𝑥2 �̃�

𝑥
2 + 𝑣

𝑦

2 �̃�
𝑦

2
)
− 𝑣𝑧1𝑣

𝑧
2,

sin(𝜑1 + 𝜑2) = �̃�
𝑦

1 �̃�
𝑥
2 + �̃�

𝑦

2 �̃�
𝑥
1 , and

sin(𝜃1 + 𝜃2) = 𝑣𝑧1
(
𝑣𝑥2 �̃�

𝑥
2 + 𝑣

𝑦

2 �̃�
𝑦

2
)
+ 𝑣𝑧2

(
𝑣𝑥1 �̃�

𝑥
1 + 𝑣

𝑦

1 �̃�
𝑦

1
)
,

with 𝑣𝑥 = (1, 0, 0)𝑇 and 𝑣𝑦 = (0, 1, 0)𝑇 and a more detailed description for the first one. This also provides the
option to extract individual terms like cos(𝜑1). Note that the behavior of the undefined cases in Equation (1)
is reflected in 𝑣 𝑗 and �̃� 𝑗 . In general, we would assume that angular values do not change during multiplication
if they are undefined anyway. Thus, setting for a point 𝑝 = (𝑥, 𝑦, 𝑧) the value 𝜑 = 0 when 𝑥 = 𝑦 = 0 and 𝜃 = 0
when 𝑥 = 𝑦 = 𝑧 = 0 won’t change the respective angular components during multiplication. In terms of the
expressions above we declare �̃� 𝑗 = (1, 0, 0) for 𝑝 𝑗 = (0, 0, 𝑧 𝑗) and 𝑣 𝑗 = (1, 0, 0), �̃� 𝑗 = 𝑣 𝑗 for 𝑝 𝑗 = (0, 0, 0).
When we then multiply 𝑝 with itself, we obtain cos(2𝜑) = 1, sin(2𝜑) = 0, sin(2𝜃) = 0 for both cases and
cos(2𝜃) = −1 and cos(2𝜃) = 1 for 𝑝 = (0, 0, 𝑧) and 𝑝 = (0, 0, 0), respectively.

Reformulating Multiplication for Mandelbrot-like Sets in 3D

375

Rephrasing Multiplication

The basic idea of using spherical coordinates to represent the multiplication is to translate the behavior of
complex multiplication to 3D involving rotations around two angles. However, the product in Equation (2)
lacks properties to account for a valid extension into 3D, cf. the undefined cases in Equation (1). A possible
product to consider is the geometric product used in geometric algebra working with multivectors. The latter
include bivectors which are obtained via the exterior product (also called wedge product) and thus relate to
the following considerations using differential forms with smooth coefficients.

While keeping the basic idea of iteration, we would like to alter the product. A candidate in 3D is the
cross product, which is defined for vectors 𝑢, 𝑣 ∈ R3 as 𝑢 × 𝑣 = (𝑢2𝑣3 − 𝑢3𝑣2, 𝑢3𝑣1 − 𝑢1𝑣3, 𝑢1𝑣2 − 𝑢2𝑣1).
This is not suitable, because multiplying a vector with itself yields the 0-vector. To make use of the cross
product, we modify the coordinates of the points before multiplying them. Here we restrict ourselves to a
single point, as used in the original iteration scheme and it aligns with the idea that the cross product is a
special case of the wedge product applied to differential forms evaluated at a certain point [4]. A differential
𝑘-form, 𝑘 ∈ N0, is a multilinear alternating function operating on tangent vectors and returning a number. For
instance 𝜔 = 𝑓1(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝑓2(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑓3(𝑥, 𝑦, 𝑧)𝑑𝑧 is a 1-form in R3 including differentials 𝑑𝑥, 𝑑𝑦, 𝑑𝑧

and smooth scalar functions 𝑓 𝑗 for 𝑗 = 1, 2, 3. The multiplication of a 𝑘1-form and 𝑘2-form producing a
(𝑘1 + 𝑘2)-form is carried out by the wedge product. Assigning constant values for the coefficients in 𝜔 and 𝜈

produces coefficients in the 2-form 𝜔∧ 𝜈 which coincide with the components of the cross product of vectors
consisting of the same coefficients used for 𝜔 and 𝜈, as in R3 1- and 2-forms are associated with vectors [4].

For our coefficients we use two functions 𝑓 , 𝑔 : R3 → R3, not necessarily smooth, which we evaluate at
a given point 𝑝, i.e. 𝑓 (𝑝) = (𝑓1(𝑝), 𝑓2(𝑝), 𝑓3(𝑝)) and 𝑔 likewise, and multiply via the cross product 𝑓 × 𝑔.
With componentwise addition, we set up two iteration schemes to decide whether a point 𝑐 ∈ R3 belongs to
our object using starting value 𝑝0 and functions 𝑓 , 𝑔. The first one is

𝑝0 = 𝑓 (𝑐) × 𝑔(𝑐)
𝑝𝑛+1 = 𝑝𝑛 × 𝑔(𝑐) ∀𝑛 ∈ N

(3)

making use of the initial idea of the cross product taken between 𝑝𝑛 and 𝑐 processed via 𝑓 and 𝑔 beforehand.
The second scheme is

𝑝0 = 𝑐

𝑝𝑛+1 = 𝑓 (𝑝𝑛) × 𝑔(𝑝𝑛) + 𝑐 ∀𝑛 ∈ N
(4)

which reflects the original iteration process of the Mandelbrot set, yet starting at the point 𝑐 ∈ R3, which
belongs to the sequence of the original Mandelbrot set anyway. Therefore, in our scenario the evolution
is caused because we let the multiplication change throughout space using differential forms and their
coefficients 𝑓 and 𝑔, instead of letting the cross product act globally.

Reformulating Old and Finding New Expressions
At this point we have two iteration schemes and the freedom to choose two functions 𝑓 and 𝑔, for which we
omit writing down their arguments, i.e., write 𝑓 instead of 𝑓 (𝑥, 𝑦, 𝑧), and we label different examples with
letter subscripts, for instance 𝑓𝐴 and 𝑔𝐴 represent one example. For the upcoming values we obtain for a
point 𝑐 its magnitude 𝑟 and angular arguments 𝜑 and 𝜃 as stated in Equation (1).

At first, we express the spherical representation given in Equation (2). This can be done by using the
scheme explained in Equation (4) and setting

𝑓𝐴 = 𝑟2 ©«
− sin(2𝜑)
cos(2𝜑)

0

ª®¬ and 𝑔𝐴 =
©«
− sin(2𝜃)
cos(2𝜑)

0
cos(2𝜃)

ª®®¬ .

Zimmermann and Bruckner

376

(a) (b) (c)

Figure 3: Renderings obtained using the scheme from Equation (3) with (a) ��, ��, � = 100, and � = 10, (b)
��, ��, � = 100, and � = 6, and (c) �� , �� , � = 100, and � = 10.

Evaluating the cross product from Equation (4) with �� and �� reduces to the description in Equation (2),
cf. Figure 2, as may be verified explicitly by expanding the cross product as

�� × �� = �2
����
�

cos(2�) · cos(2�) − 0 · 0
0 ·

(
− sin(2�)

cos(2�)

)
− (− sin(2�)) · cos(2�)

− sin(2�) · 0 − cos(2�) ·
(
− sin(2�)

cos(2�)

)
����
�
= �2 ��

�

cos(2�) cos(2�)
sin(2�) cos(2�)

sin(2�)

��
�

evaluated at one point. Note that �� is not defined for � ∈
{
± �

4 ,±
3�
4
}

and we declare a point with such value
for � failing the divergence condition and consequently it does not belong to the set. In contrast, the functions
�� and �� processed with the scheme from Equation (3) cause an appearance which is very different from the
one obtained using the scheme from Equation (4) extending in each direction when increasing �, cf. Figure
3a. An extension through space can also be observed for the following two pairs of functions

�� = ��
�

1
1
1

��
�
, �� = ��

�

cos(�)
cos(�)
cos(�)

��
�

and �� = ��
�

�2

�2

�2

��
�
, �� = ��,

evaluated in the same scheme, see Figures 3b and 3c, respectively. These objects converge rather fast and
increasing the sphere for rendering in � suggests that especially the second object extends through R3.

To explore additional examples for the scheme in Equation (4), we start with functions �� and �� . The
resulting object, see Figure 4, includes some kind of swirl which can also be seen from the opposite side but
slightly rotated. However, not all function pairs elaborated with the scheme from Equation (3) have visually
appealing counterparts when processed with the scheme from Equation (4). Returning to the question of an
extension of the Mandelbrot set to 3-space, we could think of a pair of functions forcing the Mandelbrot set
in the ��-plane, i.e.

�� = �2 ��
�

− sin(2�)
cos(2�)

0

��
�

and �� = ��
�

0
0
1

��
�
.

In Figures 4c and 4d, the overall shape of the Mandelbrot set appears in the ��-plane, yet it also exhibits
arcs extending in the �-direction. These arcs are reminiscent of the 4D quaternionic example’s projection
into 3D, which appears as a rotation of the Mandelbrot set around the �-axis [2].

Reformulating Multiplication for Mandelbrot-like Sets in 3D

377

(a) (b) (c) (d)

Figure 4: Renderings obtained using the scheme from Equation (4) with (a), (b) �� , �� , � = 100, and � = 5
and (c), (d) �� , �� , and � = 8.

Turning to Julia Sets

The iteration process used for the Mandelbrot set can be modified slightly by iterating the points in the
complex plane while fixing an added constant � to explore, for instance, the dynamics of quadratic functions
� ↦→ �2 + � [6]. In this case, we are looking for the points � not traveling to infinity during the process w.r.t.
a fixed constant �. The resulting fractals are called Julia sets. With a minor change, Equation (4) becomes

�0 = �

��+1 = � (��) × �(��) + � ∀� ∈ N
(5)

for every point � ∈ R3 and a fixed constant � ∈ R3. Note that for simplicity we treated � as the iterated point
rather than as the constant. Hence it is only a minor change to the overall procedure.

As the Julia sets are defined in the complex numbers we experiment with known constants for Julia sets of
the quadratic functions. We place these constants in the � and � coordinate of � in the same way the traditional
Mandelbrot set is reflected in the ��-plane expressed by the spherical representation, cf. Equation (2).

A first example occurs using constant � = (−1, 0, 0) shown in Figure 5, where the related point (−1, 0)
is the center of a 2-dimensional ball in the Mandelbrot set, cf. Figure 1a. Here we can find an interesting
structural behavior. The pattern of the corresponding Julia set in 2D is reflected in the balls in 3D, decreasing
in diameter attached to each other along a line which is the �-axis. Along the �-axis, we can identify flattened
repeating pieces, we may call them flats. The balls and flats, however, repeat not just along the axes. It seems
that the balls with attached flats occur as smaller copies across the larger balls and we can find smaller flats
distributed on the larger ones, giving the whole object the self-similarity fractals are known for. Variations of
the constants � allow a broad range of objects even yielding some which appear more dense and penetrated
by tunnels. An example can be seen in Figure 6 where the indentation, occurring on opposite sides, is littered
by entrances to tunnels inviting the viewer to navigate through them.

The examples we have considered so far (using �� and ��) are not dependent on the reformulation
of the multiplication, i.e., we can render the same objects using the spherical representation (Equation (2)).
However, varying � and � for Julia sets also allows us to generate very different objects like the ones displayed
in Figure 7. Here the objects in Figures 7a and 7b remind us on their counterparts in Figures 3c and 4, yet
both partly reflected in the different schemes given in Equations (3) and (4). The third one in Figure 7c shows
a very different appearance and hints the possible variety of objects we could achieve with � and �. The last
example (Figure 7d) illustrates an alteration in the third coordinate of � where increasing the value 0.31 thins
out the rings further until the object disappears at the latest at 0.348. Hence, the scheme used to describe
Julia sets and the choices for � , �, and � extend the space for exploration even further.

Zimmermann and Bruckner

378

(b)

(c)

(a) (b) (c)

Figure 5: Renderings obtained using the scheme from Equation (5) with (a) ��, ��, � = 100 and
� = (−1, 0, 0). The encircled labeled regions in (a) are magnified in (b) and (c). Further

renderings can be found in the supplementary material.

(a) (b) (c)

Figure 6: Renderings obtained using the scheme from Equation (5) with (a) ��, �� and � = (0.39, 0.2, 0).
The object appears more solid possibly penetrated by tunnels with entrances on the surface (b),

(c). Note that for visibility the iteration numbers � are chosen 10, 50, and 15, respectively.

(a) (b) (c) (d)

Figure 7: Renderings obtained using the scheme from Equation (5) with (a) �� , �� , (b) �� , �� , and � = 10,
and (c) �� = (�2�, �2, �2)� , �� = (1, cos(�), 1)� , and � = 10. All three used � = (−1, 0, 0). (d)

shows a result of �� and �� with � = (0, 0, 0.31). All examples used � = 100.

Reformulating Multiplication for Mandelbrot-like Sets in 3D

379

Summary and Conclusions

Motivated by the Mandelbrot set’s spherical extension into 3D, we recalled its description and discussed
a possible way to rewrite the trigonometric functions to improve performance. Due to the missing corre-
spondence of a 3-dimensional product, we used the relation of the cross product and differential 1-forms to
describe two iteration approaches and the freedom to set functions 𝑓 and 𝑔, to, on the one hand, reformulate
the spherical representation and on the other hand allow new ones. A minor change in the iteration process
let us turn to Julia sets, where we considered different constants and their visual appearances.

The flexibility to select and combine different functions 𝑓 and 𝑔 within distinct iterative schemes enables
the generation and exploration of novel geometric structures, potentially appealing to artists. Nonetheless,
understanding the intricate relationship between the chosen functions and their resulting geometric forms
remains challenging in both directions: determining how specific functions affect the resulting shapes and
identifying suitable functions to generate desired properties. Exploring this relation between functions and
their results by sampling and clustering the space of functions [3] is an interesting direction for future research.

Geometric objects, particularly detailed fractals whose complexity makes physical realization imprac-
tical, are well-suited for presentation within virtual environments and digital art exhibitions. Such settings
enable audiences to engage interactively with intricate structures otherwise restricted to static two-dimensional
renderings. Furthermore, as the rendering of fractals is still computationally demanding—even on current
graphics hardware—continued advancements in computational methods, such as improved validation of
distance estimates [6] [5], would be beneficial.

Moreover, while we believe the color coding used throughout the paper represents a meaningful choice,
it is just one of many possibilities and a more thorough investigation of this aspect could be an interesting
topic for further investigation as well.

References
[1] R. Alonso-Sanz. “A Glimpse of the Mandelbulb with Memory.” Complex Systems, vol. 25, no. 2, 2016.

[2] J. Barrallo. “Expanding the Mandelbrot Set into Higher Dimensions.” Bridges Conference
Proceedings. Pécs, Hungary, July 24–28 2010. pp. 247–254.
http://archive.bridgesmathart.org/2010/bridges2010-247.html.

[3] S. Bruckner and T. Möller. “Result-Driven Exploration of Simulation Parameter Spaces for Visual
Effects Design.” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, 2010, pp.
1468–1476.

[4] P. Collier. A Beginner’s Guide to Differential Forms, 1st ed. Incomprehensible Books, 2021.

[5] K. Crane. “Ray Tracing Quaternion Julia Sets on the GPU.” 2005.
https://www.cs.cmu.edu/∼kmcrane/Projects/QuaternionJulia/.

[6] J. C. Hart, D. K. Sandin, and L. H. Kauffman. “Ray tracing deterministic 3-D fractals.” Computer
Graphics (SIGGRAPH ’89 Proceedings), vol. 23, no. 3, 1989, pp. 289–296.

[7] C. A. Pickover. Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World. Dover
Publications, 2001.

[8] K. Poelke and K. Polthier. “Domain Coloring of Complex Functions: An Implementation-Oriented
Introduction.” IEEE Computer Graphics and Applications, vol. 32, no. 5, 2012, pp. 90–97.

[9] I. Quilez. “Mandelbulb.” 2009. https://iquilezles.org/articles/mandelbulb/.

[10] E. Zimmermann and S. Bruckner. “Vractal-explorer.” 2025.
https://github.com/e-zimmermann/vractal-explorer.

Zimmermann and Bruckner

380

http://archive.bridgesmathart.org/2010/bridges2010-247.html
https://www.cs.cmu.edu/~kmcrane/Projects/QuaternionJulia/
https://iquilezles.org/articles/mandelbulb/
https://github.com/e-zimmermann/vractal-explorer

