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Abstract  

A compound of n cubes is a non-convex polyhedron formed from the union of n identical concentric cubes. There 

are many ways to create a compound of n cubes with overall polyhedral symmetry. We consider four particular 

cases of a compound of n cubes, where n ranges from 2 to 5, inclusive. These polyhedra are dissected into 

interlocking pieces, making assembly puzzles. We discuss the design of such puzzles. 

 

Introduction 

Figure 1 shows four versions of a compound of n cubes, 𝐶n, where n = 2, 3, 4 and 5. Each cube is colored 

with a different color, making the cubes easily distinguishable. These are fascinating geometrical objects, 

and each also comes apart into pieces. Assembly from a set of pieces is an interesting additional challenge. 

 

 

 

 

 

 

 

 

 

Figure 1: 3D printed puzzles in the shape of a compound of n cubes: 𝐶2, 𝐶3, 𝐶4 and 𝐶5. 

 

In Figure 1, notice the rotational symmetries about the vertical axis of order 6, 3, 4 and 5, respectively 

(this symmetry is mirrored by the black stands as well). The reader should not be led to assume that the 

polyhedra shown in Figure 1 are the only cube compounds possible. Many others can be found in [10][13]. 

These are just four examples which we have converted into mechanical puzzles. 

 𝐶2 can be described by starting with two concentric cubes and rotating one by 60 about a 3-fold axis. 

A wireframe version of this polyhedron appears in Escher’s wood engraving Stars [8]. 𝐶3 is known from 

its appearance in Escher’s lithograph Waterfall [9]. It can be obtained starting from three concentric cubes 

by rotating each by 45 about each of the three axes of 4-fold symmetry. 𝐶4 was described in 1959 by 

T. Bakos [1] and is sometimes called Bakos’ compound. It can be obtained starting from four concentric 

cubes by rotating each by 60 about one of the four 3-fold axes. 𝐶5 has the highest degree of symmetry of 

the four, it has icosahedral symmetry and in addition is vertex-, edge- and face-transitive. The cube corners 

lie at the vertices of a regular dodecahedron and each vertex is shared by exactly two cubes. 

Table 1 lists various properties of these four polyhedra. The intersecting solid is the set of points 

common to all n cubes. The convex hull is the union of all line segments joining any pair of points. The 

polyhedron volume is obtained starting with n unit cubes, exact and approximate values are given. 
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Table 1: Properties of 𝐶𝑛 in Figure 1. The volume is for unit cubes. 

n (cubes 

and colors) 

intersecting 

solid 𝑆𝑛 

convex 

hull 

symmetry 

type 
volume 

2 
hexagonal 

dipyramid 

elongated hexagonal 

dipyramid 
D6 5

4⁄ = 1.25 

3 chamfered cube 
irregular truncated 

octahedron 
octahedral 

1

2
(24 − 15√2) ≈ 1.39340 

4 
small triakis 

octahedron 
chamfered cube octahedral 

229

154
≈ 1.48701 

5 
rhombic 

triacontahedron 

regular 

dodecahedron 
icosahedral 

1

2
(55√5 − 120) ≈ 1.49187 

We can consider each puzzle a dissection of Cn. However, most dissections will not make a good 

puzzle. For a good puzzle, we require that the pieces be interlocking, meaning loosely that the pieces hold 

themselves together, and the assembled puzzle does not fall apart. We’ll require something even stronger—

namely when the puzzle is assembled, no piece can move (when all other pieces are stationary). The reader 

may wonder how it is possible for such an object to come apart. The answer is that either the puzzle comes 

apart in two halves (each half consisting of at least 2 pieces) or disassembly may require that all pieces 

move simultaneously, a process known as coordinate-motion [4]. 

In order to gain more insight into the four puzzles in Figure 1, a photograph of each puzzle with one 

piece removed is included in the supplement.  These photos give further insight how the pieces go together 

to form Cn. 

The polyhedra 𝐶n are interesting objects in themselves, why convert them into mechanical puzzles? 

Because it gives additional insight into the symmetry of these objects, and the assembly process can yield 

further insight. There is the challenge of figuring out how the pieces assemble into 𝐶n, and the colors must 

be carefully matched to give the correct color symmetry. Each puzzle can be assembled into the correct 

shape but with incorrect color symmetry. 

 

Cube Compound Geometry 

The notation 𝐶n will be reserved for the specific 𝑛 cube compound in Figure 1. The avoid confusion, we’ll 

use a different name after conversion into a mechanical puzzle. The puzzle designer often provides a name 

for their design, for emphasis these puzzle names will be italicized. 

 

 

 

 

 

 

 

 

 

Figure 2: Face dissection of 𝐶5 by a regular dodecahedron (two of the twelve pieces shown). 

We note that it is relatively easy to use the symmetry of 𝐶n to dissect it into identical pieces which do 

not interlock. We can accomplish this using a face dissection. To perform a face dissection, we require a 

Bell

38



 

 

 

× 12        × 12        × 12 

 

       Component 1       2              3 

polyhedron 𝑃 sharing the symmetry of 𝐶n. As an example we will consider 𝐶5 with 𝑃 the regular 

dodecahedron. First, we translate 𝑃 so that it’s center coincides with that of 𝐶5, and scale it up so that it 

encloses 𝐶5. We then cut 𝐶5 into pieces by cutting along each triangle defined by each edge of 𝑃 and the 

center. Figure 2 shows two of twelve identical pieces that result from this process. Here we have aligned 

the vertices of 𝑃 and 𝐶5, but this need not be the case. 

Note that the number of pieces in the dissection is the same as the number of faces in P. Also note that 

when we say the two pieces are identical, we refer only to their shapes. The coloring of the two pieces in 

Figure 2 is not the same. Finally, the pieces are not interlocking. If we build 𝐶5 from the 12 pieces it will 

come apart easily. 

Given a compound of n cubes 𝐶n and 1 ≤ 𝑖 ≤ 𝑛, we define 𝑆𝑖(𝐶𝑛) as the set of all points 𝑥 ∈ ℝ3such 

that 𝑥 lies in at least i cubes. Note that by definition 𝑆1(𝐶𝑛) = 𝐶𝑛, and 𝑆𝑛(𝐶𝑛) is the intersecting solid in 

Table 1. 𝑆𝑖(𝐶𝑛) for 1 ≤ 𝑖 < 𝑛 can be considered stellations of the intersecting solid 𝑆𝑛(𝐶𝑛). The polyhedra 

𝑆𝑖(𝐶𝑛) for 1 < 𝑖 < 𝑛 are interesting polyhedra by themselves; each shares the symmetry of 𝐶n. 

 𝑆2(𝐶𝑛) is a special case which we call the core of 𝐶𝑛, it is the polyhedron consisting of all points 

common to two or more cubes. To complete 𝐶𝑛 we need add all points which are in exactly one cube. These 

separate nicely into groups of polyhedra which we call colored components. When all colored components 

are added the core itself will not be visible. 

For example, Figure 3 shows the core 𝑆2(𝐶5). This polyhedron is a stellation of the rhombic 

triacontahedron with 360 faces. We can complete 𝐶5 by gluing on 180 colored components, which in this 

case are tetrahedra of three types. A large tetrahedron (component 1), small tetrahedron (component 2) and 

component 3 which is the mirror image of component 1. We need 12 of each component in each of five 

colors, so 60 of each component for a total of 180 components. We glue each component to the core. Each 

component covers 2 faces of the core, so that the core is not visible when all components are in place. This 

is the reason the core is shown in a neutral color. 
 

             

 

 

 

 

 

 

 

 

 

 

 

 

           (a)                                                                               (b)                                                             

Figure 3:  (a) Core and (b) colored components for 𝐶5. To complete 𝐶5, 12 copies in 5 colors are needed. 

When designing puzzles, it is useful to think of each in terms of the core plus colored components. We 

consider each puzzle made from 𝑝 identical pieces. The most difficult design task is to choose 𝑝 together 

with the decomposition of the core into 𝑝 identical pieces. The colored components will be added as a final 
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× 6 copies 

step, if no component is to be split we must have that 𝑝 divides the number of colored components of each 

type. For 𝐶5 this means that 𝑝 should divide 60. 

The final design task is to add the colored components to each piece. In the assembled puzzle the core 

will not be visible, so we can choose any color for the core. 

 

Puzzle Design Details 

Table 2 contains details about the four puzzles in Figure 1; most use 𝑝 identical pieces. When 𝑝 is even we 

allow 𝑝 2⁄  identical pieces plus 𝑝 2⁄  mirror image pieces; for example in the Compound of Three Cubes. 

The column assembly indicates how the puzzle goes together. 

 

Table 2: Properties of the puzzles in Figure 1. 

n (cubes 

and colors) 
puzzle name 

p (no. 

pieces) 

cube 

size 
diameter assembly 

colors/ 

piece 

2 Kubusmix 6 5 cm 8.7 cm halves 1 

3 Compound of Three Cubes 6 6.3 cm 10.9 cm halves 3 

4 Bakos’ Puzzle 4 7 cm 12.1 cm coordinate-motion 4 

5 Compound of Five Cubes 10 8.1 cm 14.0 cm coordinate-motion 5 

 

The core for 𝐶2 is a hexagonal dipyramid, Figure 4(a). To complete 𝐶2 we must add six copies of the 

colored component in two colors. We dissect the core into six identical pieces by slicing it vertically like a 

pie into six 60 sections. This can also be described as a face dissection using a hexagonal prism of infinite 

length. Two colored components are then added to form the basic piece, as shown in Figure4(b). Since the 

two components have the same color, each piece is printed in a single color, three red and three green. This 

puzzle was invented around 2002 by Rik Brouwer; he called it Kubusmix [6], around 100 were made in two 

wood types by the Czech company Pelikan (Figure 4(c)). See [3] for a 3D printed version. 

 

 

 

 

 

 

 

 

                                     (a)                                               (b)                               (c)                                                            

Figure 4: Converting 𝐶2 into a puzzle. 

An interesting variation to Kubusmix is to glue the pieces together in pairs. The resulting three identical 

piece puzzle can only be assembled using coordinate-motion. 

The core for 𝐶3 is shown in Figure 5(a). To complete 𝐶3 we add eight copies of two types of colored 

components in three colors, Figure 5(b). The puzzle piece is created by dissecting the core into six identical 

pieces, then adding 2 large components and 4 small components to make the basic piece, shown in 

Figure 5(c). If the dark grey pyramid in Figure 5(c) is included with the piece the assembled puzzle will be 

solid. In all cases below this dark grey pyramid is removed and the puzzle contains a hollow cubical void. 
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× 8              × 8 

To complete the puzzle, we need to add 12 large components in three colors. There are 4 places on 

each piece these components could be added. There are many options available to complete this puzzle, 

depending on where these 12 components are added. We can even find a version with six different pieces. 

If we want identical pieces, our options are reduced. Rik Brouwer used six copies of the piece in 

Figure 6(a), he calls this puzzle Trikube [3]. This puzzle was also sometimes made by cutting each piece 

into two identical parts for a total of 12 pieces. Theo Geerinck and Symen Hovinga used six copies of the 

piece in Figure 6(b), they call this puzzle Triplicato [11]. I made the hybrid piece in Figure 6(c), each piece 

now has all three colors, but we require three identical pieces and three mirror image pieces. 

All of these versions come apart in halves. The difficulty varies, however, due to the stability of the 

two halves. Triplicato is the most frustrating of the three, as the halves are very unstable. 

 

 

 

 

 

 

 

 

 

 

                                     (a)                                               (b)                               (c)                                                            

Figure 5: Converting 𝐶3 into Bakos’ Puzzle. 

 

 

 

 

 

 

 

                    (a)                       (b)                                  (c)                                 (d)                                                            

Figure 6: Three options for the 𝐶3 puzzle piece: (a) Tricube, (b) Triplicato, (c) Compound of Three 

Cubes, (d) Trikube made in three wood types. 

The core for 𝐶4 is shown in Figure 7(a). To complete 𝐶4 we must add the colored components shown 

in Figure 7(b). The fact that there are 8 colored components of the second type implies that the number of 

pieces 𝑝 should evenly divide 8. This suggests that 𝑝 should be 4 or 8. 

 𝐶4 and its core have four clear axes of 3-fold symmetry, like the rhombic dodecahedron. I knew of a 

dissection of the rhombic dodecahedron into four identical pieces which assemble using coordinate-motion. 

To create the puzzle piece, I first added all eight of the second colored components to the core, and then 

intersected it with the rhombic dodecahedron piece. The V-shaped colored components are then added, six 

to each piece. The resulting puzzle piece is shown in Figure 7(c), I call this Bakos’ Puzzle [3], the assembled 

version is in Figure 1. The supplement contains much more detail on the construction of Bakos’ Puzzle. 
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× 6          × 2 

 

 

 

 

 

 

 

 

                                     (a)                                (b)                                                     (c)                                                            

Figure 7: Converting 𝐶4 into a puzzle. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: A wood puzzle of 𝐶5 made by Wayne Daniel. It is made from five I and five J pieces. 

In the collection of Stan Isaacs I noticed a wood puzzle in the shape of 𝐶5 (Figure 8). This remarkable 

puzzle was made by Wayne Daniel more than 20 years ago using 180 precisely wood components in six 

wood species. 18 wood components were then glued together to make each of the ten pieces. The assembled 

appearance is of five intersecting cubes, each composed of a different wood species. The sixth wood type 

is used by the icosahedron core and is not visible in the assembled puzzle. This puzzle is made from five 

identical pieces and five mirror image pieces—we now go over its design in detail. 

Wayne Daniel used a regular icosahedron for the core of 𝐶5, and his puzzle begins as a 10-piece 

dissection of an icosahedron [7]. Figure 9(a) shows a face dissection of an icosahedron into 20 “face 

tetrahedra”, one for each face of the icosahedron. Each face tetrahedron is then divided into an inner and 

outer tetrahedron as shown in Figure 9(b). In his puzzles, Wayne Daniel always used 𝜃 = 0°. He then made 

a puzzle piece using four connected faces of the icosahedron. The puzzle piece is made using the outer, 

inner, inner, and outer tetrahedra, respectively, from these connected faces. 

It turns out a total of ten different pieces can be generated in this fashion, plus their mirror images. 

These he labeled A-T, with B being the mirror image of A. For our purposes we prefer identical pieces, so 

which of A-T can make an icosahedron from 10 copies? It turns out that only I, J and M, N can do so [2]. 

The pieces J and N are shown in Figure 10(a). Note that I, J (and M, N) are mirror image pairs. 
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edge 

length = 2 

face tetrahedron 

𝒗 
= (𝜑, 1) 

𝒑 90° + 𝜃 

69.1° = ½ dihedral angle 

inner 

tetrahedron 

outer 

tetrahedron 

cutting plane 

√3 

𝒄 = (0,0) 

𝒆 = (0, 𝜑) 
 

 

 

 

 

 

 

 

 

  

                                            (a)                                                    (b)                                                    

Figure 9: Icosahedron dissection: (a) the face dissection, (b) details of the cut, 𝜑 is the golden ratio. 

A major problem is that although ten J pieces can form an icosahedron, the pieces cannot be assembled! 

This has not been proven mathematically, but was determined by Wayne Daniel after making the pieces 

and finding that he could not assemble them. Instead, he used 5×I and 5×J in his 𝐶5 puzzle (Figure 8). This 

combination of pieces assembles into an icosahedron, when 𝜃 = 0°. 

Some years later the woodworker Stephen Chin discovered if he increased slightly the value of 𝜃, the 

10×J puzzle could be assembled [2]. The best value of 𝜃 is determined by trial and error, and every trial 

involves making a complete set of 10 pieces and trying to assemble them into an icosahedron. 

 

 

 

 

 

 

 

 

                                        (a)                                                                               (b)                                                    

Figure 10: (a) Pieces J and N with 𝜃 = 0°; (b) colored components to make 𝐶5 with an icosahedron as 

the core. Note that components in all five colors are needed; only red and green are shown for clarity. 

The final step is to convert the 10 piece icosahedron puzzle so that the outer shape is 𝐶5. Since the core 

is an icosahedron, and not the polyhedron in Figure 3(a), the colored components are modified from those 

in Figure 3(b)—they are shown in Figure 10(b). Note that Component 3 is the only one which is unchanged 

from Figure 3(b). 14 components are glued to each J piece, great care must be taken to ensure the colors 

are correct. The 3D printed 𝐶5 puzzle in Figure 1 uses 10×J and 𝜃 = 7.65°. See [5] for plans to make your 

own 3D printed copy of A Compound of Five Cubes. 

 

Alternative Puzzles 

There are other ways to convert 𝐶𝑛 into a mechanical puzzle. An alternative concept is to make 𝐶𝑛 into a 

twisty puzzle like Rubik’s Cube. These puzzles do not come apart, but the coloring changes after twisting 
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parts of them along certain axes. To solve the puzzle the original coloring must be restored. 𝐶2 and 𝐶3 have 

been made into twisty puzzles, see Figure 11. 

 

 

 

 

 

 

 

 

                       (a)                                                        (b)                                                    

Figure 11: Twisty puzzles based on 𝐶2 and 𝐶3: (a) Conjoined Twins by David Pitcher [12] (b) Eitan’s 

Tricube by Eitan Cher. 

 

Summary 

We have taken four specific versions of a Compound of 𝑛 Cubes and detailed how we convert each into a 

mechanical puzzle. The pieces are either identical in shape or there are 𝑛/2 identical pieces and 𝑛/2 

identical mirror image pieces. No piece can move by itself when the puzzle is assembled. Many of the 

puzzles were designed previously, and several have been made from wood. We use 3D printing to produce 

modern versions. 
 

Acknowledgements 

I thank Rik Brouwer for generously sharing details of his puzzle designs, and Stan Isaacs for lending me 

the rare Wayne Daniel puzzle in Figure 8. I thank the anonymous referees for many helpful comments. 
 

References 

[1] T. Bakos. “Octahedra inscribed in a Cube.” Mathematical Gazette, Vol. 43, pp. 17-20, 1959. 

[2] George Bell. “More Icosahedron Puzzles.” Cubism For Fun #87, March 2012, pp. 10–15, 

http://www.gibell.net/puzzles/CFF/Bell2012_MoreIcosaPuzzlesCFF87.pdf 

[3] George Bell. Cube Compound Puzzles, https://www.printables.com/@GBell/collections/2045013 

[4] George Bell. “An Initial Attempt at a Mathematical Treatment of Translational Coordinate-Motion 

Puzzles.” Bridges Conference Proceedings, Richmond, Virginia, USA, 1–5 Aug., 2024, pp. 187-94. 

https://archive.bridgesmathart.org/2024/bridges2024-187.html 

[5] George Bell. PolyPuzzles, https://www.etsy.com/shop/PolyPuzzles 

[6] Rik Brouwer. Kubusmix, https://www.johnrausch.com/DesignCompetition/2002/ 

[7] Wayne Daniel. “Some Icosahedron Puzzles.” Cubism For Fun #50, Part 3, October 1999, pp. 13–17. 

[8] M. C. Escher. Stars. wood engraving, 1948. 

[9] M. C. Escher. Waterfall. lithograph, 1961. 

[10] George Hart. https://www.georgehart.com/virtual-polyhedra/compound-cubes-info.html 

[11] Symon Hovinga. https://www.treatstock.com/3d-printable-models/5151270-triplicato 

[12] David Pitcher. Conjoined Cubes, http://puzzleworld.org/DesignCompetition/2019/ 

[13] Hugo F. Verheyen. Symmetry Orbits. Birkhauser, 1996. 

Bell

44

http://www.gibell.net/puzzles/CFF/Bell2012_MoreIcosaPuzzlesCFF87.pdf
https://www.printables.com/@GBell/collections/2045013
https://archive.bridgesmathart.org/2024/bridges2024-187.html
https://www.etsy.com/shop/PolyPuzzles
https://www.johnrausch.com/DesignCompetition/2002/
https://www.georgehart.com/virtual-polyhedra/compound-cubes-info.html
https://www.treatstock.com/3d-printable-models/5151270-triplicato
http://puzzleworld.org/DesignCompetition/2019/

