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Abstract
A planar triangulation is a planar drawing of a maximal planar graph such that any two edges intersect at most at
their endpoints and each face is bounded by a cycle of length three contained in the planar graph. In this paper, we
investigate the construction of polyhedra arising from maximal planar graphs. In particular, we construct a family
of maximal planar graphs with dihedral automorphism groups. Moreover, we demonstrate that these graphs can be
realized as polyhedra with congruent triangular faces in the Euclidean 3-space having dihedral symmetry groups. We
achieve this result by exploiting Grünbaum-colorings.

Introduction

Over the years, graphs have fascinated both mathematicians and artists. Their combinatorial structures spark
curiosity and offer endless possibilities to explore patterns, relationships, and ideas that often inspire creative
and visually striking designs, see [5, 6, 12, 20, 22]. A question that often arises in the study of graphs is:

Question. How can we produce a “nice” drawing of a given graph?

We refer to a graph drawing as “nice” if it clearly reveals several properties of the corresponding graph
through its visual representation. For instance, in this paper, we investigate planar graphs which can be drawn
in the Euclidean plane such that any two drawn edges of the given graph are only allowed to intersect at their
endpoints. Another desirable property is to have a straight-line planar drawing which Tutte constructs in the
case of a given 3-connected planar graph, as discussed in [24]. The study of 3-connected planar graphs turns
out to be intriguing, as these are exactly the graphs that are formed by the vertices and edges of a polyhedron,
according to Steinitz’s theorem [23]. This study becomes particularly interesting when considering maximal
planar graphs, i.e. 3-connected planar graphs, where all faces of a planar drawing (called planar triangulation)
are bounded by cycles of length three known as 3-cycles. Hence, this class of planar graphs naturally opens
up the following question:

Question. Can a planar triangulation be realized in Euclidean 3-space as a polyhedron consisting of
congruent triangles as faces?

This question has been addressed in various works. For instance, Miller (in [14]) resp. Brakhage et
al. (in [3]) investigate the planar triangulation that describes the incidence structure of an icosahedron and
classify icosahedra with scalene resp. equilateral triangles as faces. Moreover, in [1] and [4] the authors
construct polyhedra with prescribed non-trivial symmetry groups. We further refer the reader to [7, 8, 15, 19]
for studies on the construction of polyhedra with congruent polygons as faces.

In this paper, we are interested in the construction of highly symmetric polyhedra. In particular, we
construct an infinite family of maximal planar graphs and compute corresponding polyhedra whose surfaces
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consist of congruent triangles and have dihedral symmetry groups. Note that we exploit the computer
algebra systems GAP [9] and Maple [13] to utilize the functionalities provided by the packages [18] and [21],
respectively. The illustrations in this paper are generated using the GAP package GAPic [17]. In [2]
we provide our implementations to construct the maximal planar graphs and the corresponding polyhedra
discussed in this paper.

Preliminaries

In this work, we follow the terminology from [16], including concepts such as planar graphs, connectivity
and (induced) subgraphs, to name a few. We focus on planar graphs where adding an edge between any two
non-adjacent vertices yields a non-planar graph. In the literature, these graphs are called maximal planar
graphs. It can be observed that such a graph is 3-connected, i.e. the graph remains connected even after
removing at most 2 vertices, and can be drawn in the Euclidean plane to obtain a planar triangulation. This
planar triangulation subdivides the plane into connected components called faces that are all bounded by
3-cycles. By Whitney (see [26]), it follows that every maximal planar graph has a unique planar triangulation
and hence a unique set of triangular faces. Consequently, we define a triangulation 𝑇 := (𝑉, 𝐸, 𝐹) as a
triple, where 𝐺𝑇 := (𝑉, 𝐸) is a maximal planar graph and 𝐹 is the set of faces in the corresponding planar
drawing of 𝐺𝑇 . The automorphism group Aut(𝑇) of a triangulation 𝑇 = (𝑉, 𝐸, 𝐹) is the subgroup of the
automorphism group of 𝐺𝑇 which leaves the set 𝐹 invariant. Since 𝐺𝑇 is 3-connected and planar, we know
that Aut(𝐺𝑇 ) = Aut(𝑇), see [25]. In addition, a triangulation 𝑇 can be equipped with a Grünbaum-coloring
(see [11]). Here, a Grünbaum-coloring of 𝑇 = (𝑉, 𝐸, 𝐹) is a map 𝜔 : 𝐸 → {r,g,b} such that for each 3-cycle
forming a face, the corresponding edges are colored differently. Note that a planar triangulation can have
more than one Grünbaum coloring.

As an example, we consider the graph 𝐺𝑇 = (𝑉, 𝐸) that forms a triangulation of the octahedron.
In this case, 𝐺𝑇 can be drawn as a planar triangulation and can be Grünbaum-colored as illustrated
in Figure 1a. By examining the illustration below, we see that the arising faces of 𝐺𝑇 are given by
𝐹 = {(𝑣1, 𝑣2, 𝑣3), (𝑣1, 𝑣2, 𝑣5), (𝑣1, 𝑣3, 𝑣4), (𝑣1, 𝑣4, 𝑣5), (𝑣2, 𝑣3, 𝑣6), (𝑣2, 𝑣5, 𝑣6), (𝑣3, 𝑣4, 𝑣6), (𝑣4, 𝑣5, 𝑣6)} and
𝑇 = (𝑉, 𝐸, 𝐹) forms the corresponding triangulation.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5 𝑣6

(a) (b)

Figure 1: (a) Triangulation 𝑇 of the octahedron with a Grünbaum-coloring and (b) polyhedron that
corresponds to 𝑇 .

We aim to realize certain triangulations as polyhedra with congruent triangles as faces by using cor-
responding Grünbaum-colorings. To achieve this, we associate each edge color with a chosen edge length
and analyze the resulting distance equations. For simplicity, we define Λ as the set that consists of triples
(𝑎, 𝑏, 𝑐) ∈ R3

>0 satisfying the triangle inequalities: 𝑎 + 𝑏 ≥ 𝑐, 𝑎 + 𝑐 ≥ 𝑏 and 𝑏 + 𝑐 ≥ 𝑎. Hence, let 𝜔 be
a Grünbaum-coloring and (ℓ𝑟 , ℓ𝑔, ℓ𝑏) ∈ Λ, where ℓ𝑟 ( ℓ𝑔 and ℓ𝑏) corresponds to the length of an edge that is
colored 𝑟 (𝑔 and 𝑏, respectively). Then, an (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embedding of 𝑇 = (𝑉, 𝐸, 𝐹) is a map 𝜙 : 𝑉 → R3
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such that all vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 with {𝑣𝑖 , 𝑣 𝑗} ∈ 𝐸 satisfy the distance equation

∥𝜙(𝑣𝑖) − 𝜙(𝑣 𝑗)∥ = ℓ𝑘 ,

where 𝜔({𝑣𝑖 , 𝑣 𝑗}) = 𝑘 with 𝑘 ∈ {𝑟, 𝑔, 𝑏}. By combining the incidence structure of 𝑇 and the (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-
embedding 𝜙, we obtain a polyhedron in R3. Here, we call this polyhedron an embedded triangula-
tion and denote it by T 𝜙. The symmetry group of T 𝜙 consists of all isometries of R3 that leave
T 𝜙 invariant, i.e. 𝜓(𝜙(𝑉)) = 𝜙(𝑉) for every isometry 𝜓 in the symmetry group of T 𝜙 . For instance,
if 𝑇 is the triangulation illustrated in Figure 1a, then a (

√
2,
√

2,
√

2)-embedding 𝜙 of 𝑇 is given by
[𝜙(𝑣1), . . . , 𝜙(𝑣6)] = [(1, 0, 1), (1, 1, 0), (2, 1, 1), (1, 1, 2), (0, 1, 1), (1, 2, 1)]. This embedding gives rise
to the polyhedron shown in Figure 1b which forms an octahedron in R3.

Construction of Triangulations with Dihedral Symmetry

In this section, we define an infinite family (𝑇2𝑛)𝑛∈N≥2 of triangulations such that the automorphism group
of 𝑇2𝑛 is isomorphic to the dihedral group 𝐷2𝑛 (of order 4𝑛), for 𝑛 ≠ 3. To describe the construction of
𝑇2𝑛 we exploit wheel and ring graphs illustrated in Figures 2a to 2c. Let 𝑇2𝑛 be the triangulation containing
the vertices 𝑣, 𝑤, 𝑣1, . . . , 𝑣2𝑛, 𝑤1, . . . , 𝑤2𝑛 such that 𝐺 := 𝐺𝑇2𝑛 can be decomposed into the following three
induced subgraphs:

1. 𝐺 [{𝑣, 𝑣1, . . . , 𝑣2𝑛}] forming a wheel graph, see Figure 2a,
2. 𝐺 [{𝑣1, . . . , 𝑣2𝑛, 𝑤1, . . . , 𝑤2𝑛}] forming a ring graph, see Figure 2c and
3. 𝐺 [{𝑤, 𝑤1, . . . , 𝑤2𝑛}] forming a wheel graph, see Figure 2b.

𝑣 𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 𝑣2𝑛. . .

(a)

𝑤 𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6 𝑤2𝑛. . .

(b)

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤2𝑛 𝑤1

. . .

. . .

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣2𝑛 𝑣1

(c)

Figure 2: (a) and (b) wheel graphs with 2𝑛 + 1 vertices each and (c) ring graph with 4𝑛 vertices.

The triangulation 𝑇2𝑛 is shown in Figure 3 and we observe that for every 𝑛 ≥ 2 the triangulation 𝑇2𝑛 can be
equipped with a Grünbaum-coloring. Note that in Figure 2c and in Figure 3 the vertices 𝑣1 and 𝑤1 appear
twice. These vertices are drawn twice solely to provide a simplified illustration of the graphs. Hence, these
pairs are identified in the combinatorial structure of the corresponding graphs.
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𝑤

𝑣

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤2𝑛 𝑤1

. . .

. . .

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣2𝑛 𝑣1

Figure 3: Triangulation 𝑇2𝑛 with 4𝑛 + 2 vertices and a Grünbaum coloring.

For 𝑛 ≥ 2 and 𝑛 ≠ 3, the automorphism group of the triangulation 𝑇2𝑛 is given by Aut(𝑇2𝑛) = ⟨𝜎, 𝜏⟩
with the permutations 𝜎 and 𝜏 defined by

𝜎 := (𝑣, 𝑤) (𝑣1, 𝑤2, 𝑣3, . . . , 𝑣2𝑛−1, 𝑤2𝑛) (𝑤1, 𝑣2, 𝑤3 . . . , 𝑤2𝑛−1, 𝑣2𝑛) and

𝜏 :=
𝑛−1∏
𝑖=1

(𝑣1+𝑖 , 𝑣2𝑛+1−𝑖) (𝑤1+𝑖 , 𝑤2𝑛+1−𝑖).

Since the generators of Aut(𝑇2𝑛) satisfy 𝜏2 = 𝜎2𝑛 = 1 and 𝜏𝜎𝜏 = 𝜎−1 and Aut(𝑇2𝑛) contains exactly
4𝑛 elements, the group Aut(𝑇2𝑛) is indeed a dihedral group of order 4𝑛. Note that 𝜏 is a reflection that fixes
𝑣1, 𝑣𝑛+1, 𝑤1 and 𝑤𝑛+1. Further, with the help of GAP, we have been able to verify that the triangulation 𝑇2·3
has an automorphism group that is isomorphic to 𝐶2 × 𝑆4, which contains a dihedral group of order 12 as a
proper subgroup. Moreover, we observe that 𝑇2·3 describes the incidences between the vertices and edges of
the polyhedron that results from a cube by replacing each of its faces with a square pyramid, see [6].

Construction of Polyhedra with Dihedral Symmetry

Now, we construct (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embeddings of the triangulation 𝑇2𝑛 = (𝑉, 𝐸, 𝐹), where 𝑛 ≥ 2 and 𝑛 ≠ 3, such
that the resulting polyhedra have dihedral symmetry groups of order 4𝑛. Since the vertices of 𝑇2𝑛 are given
by 𝑣, 𝑤, 𝑣1, . . . , 𝑣2𝑛, 𝑤1, . . . , 𝑤2𝑛, we can make use of the incidence structure as illustrated in Figure 3.

First, we assign 3D-coordinates to the vertices 𝑣1, . . . , 𝑣2𝑛, 𝑤1, . . . , 𝑤2𝑛 of the ring graph using the
following idea: Let 𝑟1, ℎ1 ∈ R>0 be positive real numbers, 𝛼 := 𝜋𝑘

𝑛
for 𝑘 ∈ N with gcd(2𝑛, 𝑘) = 1 and

𝑟2 := |𝑟1 cos(𝛼) |. We aim to place the vertices 𝑣1, . . . , 𝑣2𝑛 on the 𝑥𝑦-plane with 𝑧 = ℎ1 such that

• the coordinates corresponding to (𝑣2, 𝑣4, . . . , 𝑣2𝑛) form an 𝑛-gon with corners lying on the circle of
radius 𝑟2 centered at (0, 0, ℎ1) and

• the coordinates corresponding to (𝑣1, 𝑣3, . . . , 𝑣2𝑛−1) form an 𝑛-gon with corners lying on the circle of
radius 𝑟1 centered at (0, 0, ℎ1).

Similarly, the vertices 𝑤1, . . . , 𝑤2𝑛 are embedded in the same manner along two concentric circles in the 𝑥𝑦-
plane, centered at (0, 0,−ℎ1), by swapping 𝑟1 and 𝑟2. Hence, the coordinates of 𝑣1, . . . , 𝑣2𝑛 and the coordinates
of 𝑤1, . . . , 𝑤2𝑛 are contained in two parallel planes. We refer to Figure 4 for a visual representation of this
construction. The desired embedding of 𝑇2𝑛 is then completed by assigning 3D-coordinates to the vertices
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𝑣, 𝑤 such that the faces corresponding to the wheel graphs are congruent to the faces corresponding to the
ring graph.

𝜙(𝑣8)

𝜙(𝑣1)

𝜙(𝑣2)
𝜙(𝑣3)

𝜙(𝑣4)

𝜙(𝑣5)

𝜙(𝑣6)
𝜙(𝑣7)

𝜙(𝑤8)

𝜙(𝑤1)

𝜙(𝑤2)

𝜙(𝑤3)

𝜙(𝑤4)

𝜙(𝑤5)

𝜙(𝑤6)

𝜙(𝑤7)

(a)

𝜙(𝑤1)

𝜙(𝑤2)

𝜙(𝑣2) 𝜙(𝑣1)

(b)

Figure 4: Embedding of the vertices of the ring graph with 𝑛 = 4 and 𝑘 = 1:
(a) top view and (b) part of the side view.

More precisely, for (ℓ𝑟 , ℓ𝑔, ℓ𝑏) ∈ Λ, we construct an (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embedding 𝜙 : 𝑉 → R3 as follows: The
images of the vertices 𝑣1, . . . , 𝑣2𝑛 under 𝜙 can be defined as

𝜙(𝑣𝑖) :=

{
(𝑟1 cos(𝑖𝛼), 𝑟1 sin(𝑖𝛼), ℎ1), for 𝑖 ∈ {1, 3, . . . , 2𝑛 − 1}
(𝑟2 cos(𝑖𝛼), 𝑟2 sin(𝑖𝛼), ℎ1), for 𝑖 ∈ {2, 4, . . . , 2𝑛}

and the images of 𝑤1, . . . , 𝑤2𝑛 under 𝜙 as

𝜙(𝑤𝑖) :=

{
(𝑟1 cos(𝑖𝛼), 𝑟1 sin(𝑖𝛼),−ℎ1), for 𝑖 ∈ {2, 4, . . . , 2𝑛}
(𝑟2 cos(𝑖𝛼), 𝑟2 sin(𝑖𝛼),−ℎ1), for 𝑖 ∈ {1, 3, . . . , 2𝑛 − 1}.

With ℎ2 :=
√︃

4ℎ2
1 + 𝑟2

1 − 2𝑟1𝑟2, we define 𝜙(𝑣) and 𝜙(𝑤) as

𝜙(𝑣) := (0, 0, ℎ1 + ℎ2) and 𝜙(𝑤) := (0, 0,−ℎ1 − ℎ2).

By construction, the resulting polyhedron T 𝜙 consists of congruent triangular faces and has a symmetry
group that is isomorphic to the dihedral group of order 4𝑛. We observe that the edge lengths of T 𝜙 are given
by

ℓ𝑟 = ℎ2
2 + 𝑟2

1 , ℓ𝑔 = 𝑟2
1 sin(𝛼)2 and ℓ𝑏 = ℎ2

2 + 𝑟2
2 .

Our construction leads to certain embeddings of𝑇2𝑛 where the edge lengths are defined by the parameters 𝑘, 𝑟1
and ℎ1. For given values of 𝑟1 and ℎ1, our proposed construction yields 𝜑(𝑛) distinct (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embeddings
of the Grünbaum-colored triangulation 𝑇2𝑛, where 𝜑 denotes the Euler’s totient function. Moreover, the
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polyhedron obtained from our construction for given 𝑟1, ℎ1 has self-intersections if 𝑘 ∉ {1, 2𝑛− 1}. Note that
the question whether there exists an (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embedding of 𝑇2𝑛 for every (ℓ𝑟 , ℓ𝑔, ℓ𝑏) ∈ Λ remains open.

In Figures 5 and 6, we illustrate different polyhedra that can be constructed by embedding the triangulation
𝑇2·4 into R3 via suitable (ℓ𝑟 , ℓ𝑔, ℓ𝑏)-embeddings that are obtained from the above method. In the figures, the
vertices 𝑣 and 𝑤 are colored in dark green, and the vertices 𝑣1, . . . , 𝑣8 and 𝑤1, . . . , 𝑤8 are colored in orange
for better illustration.

(a) (b)

Figure 5: Different views of the embedding of 𝑇2·4 for 𝑘 = 1.

(a) (b)

Figure 6: Different views of the embedding of 𝑇2·4 for 𝑘 = 3.

Weiß et al.

354



Furthermore, in Figure 7 we present photographs of 3D-printed versions of the above polyhedra. In
order to create these models we exploited the GAP package [10].

(a) (b)

Figure 7: 3D-printed embeddings of 𝑇2·4 for 𝑘 = 1 and 𝑘 = 3.
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[17] A. Niemeyer, R. Akpanya, T. Görtzen, M. Weiß, and L. Schnelle. “GAPic, Version 0.1.”

https://github.com/GAP-ART-RWTH/GAPic. Apr 2025. GAP package.
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