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Abstract 

This paper shows that space-filling curves are an excellent source for creating Escheresque tessellations. The
irregular path of the curve challenges to look more closely at artworks with such tessellations. The focus is to
investigate deformation schemes of the tiles which are related to the path of the curve. The schemes discovered
by Richard Hassell for a square grid are described, and adapted for a hexagonal grid.

Introduction

Since  their  discovery  by  Peano  [9]  in  1890,  space-filling  curves  have  been  analyzed  for  their
mathematical  properties  [10].  Less  attention  has  been  paid  to  their  suitability  as  a  framework  for
tessellations. In this paper, we show how a variety of space-filling curves form the basis for attractive
tessellations after a limited number of generations. Two aspects play an important role. First, the path of
the curve has a rather irregular pattern. A work of art with an underlying space-filling curve challenges
the viewer to unravel the path, and it is less common than regular tessellations. Second, the tiles can be
deformed in an Escheresque way so that they relate to the path of the curve. In general, multiple prototiles
will be needed and their deformation will make them fit together.

Space-filling curves are constructed in a grid of triangles, squares, or hexagons [11]. The polygons in
such a grid will be the tiles of a tessellation. Each segment of the curve is assigned to a specific tile, and
hence the tessellation becomes a sequence of tiles underlying the curve. In Escheresque tessellations [1],
the edges of tiles are deformed. By working in regular grids, the well-known isohedral types [8] can be
applied for deforming edges. Our goal, however, is to correlate the deformed shape and/or the image of
the tile with the path of the space-filling curve. Many isohedral types cannot be applied then. Fortunately,
the specific path of a curve allows for special deformation schemes.

Two different categories of  deformation schemes can be discerned, that we name Node Oriented
Deformation Scheme (NODS) and Edge Oriented Deformation Scheme (EODS). In case of NODS, a
vertex of the curve lies at the center of a tile. In case of EODS, an edge of the curve lies between two
vertices of a tile, and often it will be a side of a tile. Our overview shows examples of both categories. In
addition, we will also present less common types of tessellations derived from space-filling curves.

Node Oriented Deformation Scheme

In a NODS, each vertex of the curve is located at the center of a tile. Each curve segment connects the
center of a tile to the center of the next tile. Two restrictions on a curve are needed for applying NODS.
Firstly,  each curve segment crosses a common tile side of two subsequent  tiles.  Secondly,  all  curve
vertices must be different, since a tile may only be visited once.

The well-known Peano curve in the square grid is used to elaborate our deformation scheme, refer to
Figure 1. The curve segments are drawn by arrows to show the path. There are three ways in which the
path crosses the sides of a square: from the incoming side, the path continues straight to the opposite side
(green arrow), or it turns to the adjacent side on the left (red arrow) or on the right (blue arrow). So, three
prototiles suffice to generate the tessellation, because they can be rotated by multiples of 90 degrees for
all four incoming sides. The deformations of the prototiles relate to each other as is illustrated in Figure 2.
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Figure 1:  Peano curve with colored segments and deformed tiles

The prototiles in Figure 2 correspond to the curve turning right (a), going straight (b), and turning
left (c). There are only two classes of deformed edges, denoted by  s and  t. Edge  s‘ is a translation of
edges,  and edge  t‘  is  a mirror of edge  t.  Prototiles (a)  and (c)  are mirrors of each other only if  the
deformation of edge s is symmetric with respect to the perpendicular of the right side of the square, drawn
by the red dashed line in Figure 2(b). Edges t and t’ must be center-symmetric. All these constraints about
the deformation of edges must be satisfied for having a valid NODS.

(a) (b) (c)

Figure 2:  Prototiles in square grid, (a) turning right, (b) going straight, (c) turning left.

A NODS has firstly been applied by Richard Hassell in his artwork Komodo Flow II [4]. However,
the description of the artwork lacks a detailed explanation. Their underlying curve is not a Peano curve,
but contains square supertiles of 5 by 5 square tiles. Any space-filling curve in a square grid obeying the
above two curve restrictions can be tessellated using a NODS. The rationale is that edges s and s’ follow
the path of the curve. Edges t appear only on the left side of the curve, and edges t‘ appear only on the
right side of the curve. Thanks to center symmetry, edges t (and t’) match their siblings where the curve
goes in the opposite direction.

In the same way as for the square grid a NODS can be defined for space-filling curves in a hexagonal
grid.  Five prototiles are needed in the proposed deformation scheme: one for going straight,  two for
turning left with angles of 60 degrees and 120 degrees, and similarly two for turning right. Figure 3 shows
the design of the prototiles. The two prototiles for turning right are mirrors of those turning left in Figure
3(b) and (c). The deformation of edge s is symmetric with respect to the perpendicular of the right side of
the hexagon, drawn by the red dashed line in (a). The constraints of the edges s, s’, t and t’ are analogous
to those of the square grid above. The edges of the two prototiles turning right have type t on the left side
of the curve and type t’ on the right side thanks to the mirroring. So, for all five prototiles holds that the
edges t only appear on the left side of the curve, and the edges t‘ only on the right side.

Any  space-filling  curve  in  a  hexagonal  grid  obeying  the  above  two  curve  restrictions  can  be
tessellated using a NODS. An example of a tessellation using the prototiles of Figure 3 can be found in
Figure 4 for the well-known Gosper curve [2].
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(a) (b) (c)

Figure 3:  Prototiles in hexagonal grid, (a) going straight, (b) turning left 60 degrees,
(c) turning left 120 degrees.

Figure 4:  The 5 deformed fish prototiles follow the path of the Gosper curve.

Edge Oriented Deformation Scheme

An EODS relies on the construction of a space-filling curve by the edge-replacement method [2][7]. In
this method each vertex of a curve lies on a tile corner. In triangular grids and square grids, a curve
segment lies on the side of a tile. The generator for the curve dictates for each segment (1) whether the
tile to the left or to the right of the segment is assigned to that curve segment, and (2) whether in the next
iteration the segment is replaced in the forward direction of the curve or in its backward direction. In
hexagonal grids a curve segment lies inside a hexagon because it skips one corner of a hexagon, see [2].

A simple example of a curve in a triangular grid is designed in Figure 5(a). The curve starts at the
bottom left corner and ends at the bottom right corner. The half arrowhead indicates the assigned tile and
the  iteration  direction.  Note  that  subsequent  assigned tiles  need  not  have  a  side  in  common.  In  the
example, tile 3 and tile 4 only share a corner. For drawing a continuous path of the curve by a thick line,
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one must cross the area of tile 2. Figure 5(b) shows how tessellations after 2 iterations can be combined:
the curve continues from the end point of one triangle to the beginning point of the next triangle rotated
by 60 degrees. A triangle can, due to the symmetry, be reflected as indicated by the large arrow under the
rightmost triangle in (b). In fact, each of the 4 triangles of the generator can be reflected, yielding 16
possible generators.

(a) (b)

Figure 5:  (a) Generator of triangle and (b) concatenation of 3 tessellations after 2 iterations.

Deformation of the triangle edges is limited to isohedral type IH90 [8], meaning that all 3 edges have
the same center symmetric deformation. The path of the curve needs to be painted in the tiles, since there
is no way to indicate it otherwise. The triangles of the example in Figure 6 are filled with a seal, with the
path as an overlay.  Concatenation of 6 rotated triangles gives a closed curve. Three of the triangles are
reflected. Due to these reflections and also due to reflections in the generator, some of the curve edges
touch each other. The white overlay of the curve slightly away from the edges illustrates that . Sometimes
the curve makes a U-turn, and at some edges the curve meets itself in opposite directions.

Figure 6:  Closed curve of 6 rotated triangles, filled with seals.

In  the  square  grid,  Benoit  Mandelbrot  discovered  a  space-filling  curve  known as  Mandelbrot's
Quartet [6]. Figure 7(a) shows the generator of 5 segments, where the dark red and blue bars represent the
path of the curve, starting at the left and ending at the top. Figure 7(b) shows a tessellation of 125 tiles at
the third generation of the curve. The segments with blue bars iterate the curve in forward direction, those
with  red  bars  backward,  which  is  achieved  by  going  through  the  generator  in  reverse  order.  Two
consecutive segments  in  this  tessellation can have the same color  or  different  colors.  However,  two
consecutive segments in the same direction always have different colors, so that their tiles have only a
single corner in common, and no sides. Emphasizing the path of the curve is then possible by painting the
tiles appropriately, see the example in Figure 8.
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(a) (b)

Figure 7:  (a) Generator of Mandelbrot's Quartet curve, and (b) third generation tessellation.

Figure 8:  The mouths follow the path of the Mandelbrot's Quartet curve.

Deforming the tile’s edges can again be done according the well-known isohedral types for a square
(e.g., IH62) with the drawback that such deformations do not relate to the curve’s path. Richard Hassell
developed for his artwork Coral Geckos I [5] an alternative deformation scheme that does not belong to
the regular isohedral types. This scheme called EODS is shown with example deformations in Figure 9.

(a) (b)

Figure 9:  EODS scheme in square grid for prototile left to the curve (a), and right to the curve (b).

The prototile in Figure 9(a) corresponds to the red tile in Figure 7(a). Its three sides with label s have
the same deformation. Its side with label t has the same deformation as the three sides with label t of the
other prototile in Figure 9(b), which corresponds to the blue tile in Figure 7(a). All the deformed edges
have rotational symmetry around their center, so that it does not matter from which of both tiles their
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common edge is observed. It turns out that this deformation scheme can be applied to any curve made
with edge replacement in a square grid!

Furthermore, the curve in Figure 7(b) has no touching vertices, so that it meets the curve restrictions
in  the  NODS  section.  Therefore,  the  NODS  scheme  can  be  applied  to  this  curve  as  an  alternative
tessellation. The tiles are then shifted by half the tile side in both horizontal and vertical direction. In
general, any self-avoiding curve in the square grid (see e.g., [7]) can be tessellated by the NODS scheme!

Also  in  a  hexagonal  grid  an  EODS  can  be  designed  for  space-filling  curves  made  by  edge
replacement. Figure 10 shows the two prototiles with example deformations. Edges with the same label
(r, R, t, T) have the same deformation.

(a) (b)

Figure 10:  EODS in hexagonal grid for the prototile left to the curve (a), and right to the curve (b).

In the prototile of Figure 10(a) the curve segment runs from corner P1 to P3, so that the prototile is
located to the left of the curve. The deformed edge with label r between P1 and P2 is rotated 120 degrees
clockwise around P2 to become the deformed edge between P2 and P3 with label R. The deformed edges
with labels t and T are defined by the other prototile in Figure 10(b). That prototile is located to the right
of the curve, since the curve segment runs from corner Q1 to Q3. The deformed edge with label t between
Q1 and Q2 is rotated 120 degrees counterclockwise around Q2 to become the deformed edge between Q2

and Q3 with label T.

The EODS scheme can be applied to any Gosper curve mentioned by Fukuda [2]. An example of a
closed Gosper 19 curve is presented in Figure 11.

(a) (b)

Figure 11:  Closed Gosper 19 curve with EODS scheme, (a) full artwork, (b) detail.
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Miscellaneous Tessellations

The following tessellations are based on space-filling curves with dedicated deformed tiles.

Richard Hassell found out that the Gosper curve can also be tessellated with 3 pentagon prototiles,
see Figure 12(a). In fact they are degenerated hexagons with a vertex in the middle of a long edge. He
went a step further in his artwork FlowFish [3] by adding 2 vertices to each prototile, so that all deformed
tiles have the same shape or are mirrors, see a sketch in Figure 12(b).

(a) (b)

Figure 12:  Tessellation of Gosper curve with (a) degenerated hexagons and (b) degenerated octagons.

A constructed Hilbert curve is not suited to assigning a square tile to each segment, because that
would lead to unfilled squares. Instead, the area around a curve segment can be filled  by alternating a
parallelogram and a triangle. Figure 13 shows a tessellation with deformed prototiles. Other curves like
the Peano can also be tessellated with parallelograms and triangles, but not with a simple alternating
sequence.

Figure 13:  Hilbert curve, tessellated with parallelograms and triangles.

Finally, for the Gosper 13 curve we designed a tessellation with rhombuses.  Fukuda [2] shows the
construction of this curve with dark equilateral triangles, each attached to a  curve segment. One of the
two white neighbor equilateral triangles can be combined with the dark triangle to become a rhombus.
The choice of the correct white triangle is based on some heuristic rules and a search algorithm. Figure
14(a) shows the triangles of the covered grid, together with the curve in red. A black triangle and a white
triangle  with  a  circle  form  a  rhombus.  Figure  14(b)  shows  a  corresponding  artwork  with  birds  as
deformed rhombuses. All edges of the rhombuses have the same deformation (IH34), with the additional
constraint of center symmetry. So, all birds have the same shape, colored yellow to the right of the curve
and blue to the left. The tint difference indicates whether a rhombus is made from the right or left white
neighbor triangle of the black triangle.  Alternatively, the deformation scheme  tsss and  sttt,  explained
above for square tiles, can be applied for the rhombuses. The two prototiles on the left side of the curve
and the two prototiles on the right side of the curve then have four different shapes.
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(a) (b)

Figure 14:  Tessellation of Gosper13 curve with rhombuses. (a) design, see text, (b) artwork.

Summary and Conclusions

We have shown in various ways that Escheresque tessellations can be made from space-filling curves. We
documented two deformation schemes for the square grid which were discovered by Richard Hassell.
These  two  schemes,  named  Node  Oriented  Deformation  Scheme (NODS)  and  Edge  Oriented
Deformation Scheme (EODS), can be applied in general to space-filling curves which meet the imposed
restrictions.  We  derived  NODS  and  EODS  schemes  for  tessellations  of  space-filling  curves  in  a
hexagonal grid. And we have discussed some tessellations that are less obvious to design.
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