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Abstract
This paper presents a method to transform procedural sashiko embroidery into intricately coloured polygonal tiles.
Two-coloured hitomezashi stitch patterns are used as time-periodic inputs to the heat diffusion equation. Rendering
the resulting temperature field with a photograph as colour wheel produces decorative rectangular tiles. Conformal
Schwarz-Christoffel mappings extend the recipe to both regular and irregular polygons of arbitrary vertex count. A
range of tile designs and examples of an Archimedean and Cairo tessellation thereof are showcased.

Introduction: Hitomezashi Stitch Patterns
This work was inspired by a Numberphile video [2] in which Ayliean MacDonald creates procedural line
drawings reminiscent of hitomezashi patterns. We will consider sashiko stitches of unit length aligned on a
uniform square grid. A binary code on the x |y axis governs for each column|row whether the first stitch in
the vertical|horizontal run touches the axis (‘0’ bit) or is offset by 1 unit (‘1’ bit), as depicted in Figure 1.

Figure 1: Procedural generation of hitomezashi patterns (left). All 16 combinations of two-bit periodic
codes produce possibly offset/reflected versions of three prototypical designs (right).

Codes built from repeating two-bit numbers b1b2 ≡ b1b2b1b2b1b2 . . . induce isolated squares and turret-
like or diagonal zigzag lines (Figure 1, right) but irregular codes can quickly produce more intricate patterns
(Figure 2). Designs can be uniquely labelled by a pair of identifiers {X,Y } both of the form (d)∗n, where the
binary stitching code for the corresponding axis is the n-digit representation of integer d in base 2 (Figure
2a). The optional superscript ∗ signals that the binary code for x |y is to be appended by itself in reverse bit
order so as to induce output patterns with horizontal|vertical mirror symmetry (Figure 2b).

Hitomizashi patterns arewell known to themath art community [3][5][6][7] and have plenty of decorative
appeal in their own right. Here, I use them as inputs for further processing and artistic manipulation.

Generation of Rectangular Decorative Tiles from Stitch Patterns and Heat Equations
The overall workflow, illustrated schematically in Figure 3, is built from the following four steps.

1. Pseudo-random generation of hitomezashi patternWe draw binary sequences of length N + 1 and
M+1 for the x and y axes respectively. Enforcing correlation between successive bits, i.e. bit flips bi = 1−bi−1
(i ≥ 2) occur with a specific probability 0 ≤ pflip ≤ 1, can nudge the output towards aesthetically favourable
directions. While highly subjective, the procedure with suitable constraints on M, N and pflip (discussed
later) tends to yield a visually pleasing pattern and output tile for one out of every 3 or 4 random trials.
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Figure 2: Example of a bit-encoded stitch pattern (left) and its symmetric extension (right).

Figure 3: Core workflow to generate rectangular decorative tiles.

2. Two-colouring to obtain a cell activity matrix The stitch pattern partitions its rectangular bounding
box into distinct zones that can be two-coloured, turning it into an M × N activity matrix

[
Am,n

]
of cells that

are either ‘active’ (black = 1) or ‘idle’ (white = 0). Throughout this work I always assign the bottom left cell
to be active, i.e. AM,1 = 1 serves as ‘seed’ for the colouring. This choice, combined with symmetrically
extended stitch patterns, can offer artistic advantage as it ensures a splash of colour or other visual feature
near the corners of the output tile. That said, dual colouring (AM,1 = 0) could certainly be used as well.

3. Computing surface temperature T̂ The cell activity matrix can now be interpreted as N ×M “elec-
tronic circuits” atop a semi-infinite “semiconductor substrate”with thermal diffusivity D, forwhich the surface
temperature distribution can be computed from the heat diffusion equation D∇2T(®r, t) − ∂T(®r, t)/∂t = 0. This
seemingly haphazard leap of imagination is rooted in my day job as a thermal modelling engineer at a nano-
electronics research facility but should be quite suited to mathematical art, since diffusion equations produce
well-behaved unique solutions and tend to soften hard features in their inputs much like a blurring filter does.

For reasons that will become fully clear during step 4 (rendering of the output tile), we assume that
the circuit power oscillates sinusoidally in time at angular frequency ω. In practice, one does not need to
decide on numerical values for ω or D individually. Rather, both parameters combine into a single and more
intuitive diffusion length λ that can be used to control the artwork appearance, as will be discussed shortly.

Switching to complex phasor representation T(®r, t) ↔ Re
[
T̂(®r) exp(iωt)

]
turns the partial differential

equation for T into an ordinary one for T̂ that can be solved analytically. In principle, one could forgo the
3D half space and instead opt to solve the 2D heat equation directly on the square or rectangular domain
comprising the cell activity pattern. However, this 2D configuration is computationally costly and thus
less favourable for generating artwork. The boundary conditions on the rectangle perimeter induce infinite
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summations over image heat sources thatmay converge rather slowly. In addition, the fundamental 2D solution
for T̂ involves Bessel functions K0(a‖®r ‖) while the 3D case admits the simpler kernel exp(−a‖®r ‖)/‖®r ‖.

For 3D half space no image sources are needed, and it suffices to derive the fundamental response
Ĝ(x, y) to a single square cell rect(x) rect(y) δ(z) centred at the origin. The desired solution T̂(x, y, z = 0)
induced by the activity pattern Am,n then immediately follows by superimposing shifted copies of Ĝ(x, y). A
fast approximate solution for Ĝ can be obtained by evenly subdividing the unit square heat source into K ×K
smaller squares centred around (xk, yk) which are then each treated as infinitesimal point sources, yielding

Ĝ(x, y) ∝
K2∑
k=1

1√
(x − xk)2 + (y − yk)

2
exp

[
−

1 + i
λ

√
(x − xk)2 + (y − yk)

2
]

, λ ≡

√
2D
ω

. (1)

Some prefactors have been omitted without loss of generality because the output artwork is invariant to
global scaling of the temperature field. The singular terms at (x, y) = (xk, yk) that attempt to give the
contribution of a subsquare to the temperature response in its own centre must be replaced by
2πλ {1 − exp[−(1 + i)/(

√
π K λ)]}/(1 + i). Physically, the diffusion length λ in Equation (1) is a metric

for how deep thermal oscillations at angular frequency ω can penetrate into a material with diffusivity D.
Artistically, it can be wielded as an independent parameter for tuning the artwork appearance, as will be
illustrated in a later Figure. Ĝ is evaluated on the centres of a uniform square grid with unit size 1/K covering
the region |x | ≤ N − 1/2, |y | ≤ M − 1/2. Superimposing shifted copies then yields T̂(z = 0) at a resolution
of K pixels per stitch, producing a rectangular output tile that is K × N pixels wide by K × M pixels tall.

4. Rendering T̂ with a source image as ‘colour wheel’ The complex field T̂ ≡ T̂R + i T̂I is a smooth
function that bundles the in-phase and out-of-phase components of the periodic temperature oscillations.
Taking a page from Frank Farris’s delightful playbook [1], we can use a source photograph (measuringWsource
pixels wide by Hsource pixels tall) to serve as a ‘colour wheel’ with which to render T̂ . A variety of schemes
could be conceived to map field values to source pixel coordinates; I opted for simple linear transformations
of the real and imaginary parts to respectively pixel columns and rows in the source image, i.e.

xsource = ceil

(
T̂R − T̂min

R

T̂max
R − T̂min

R
·Wsource

)
, ysource = ceil

(
T̂I − T̂min

I

T̂max
I − T̂min

I
· Hsource

)
. (2)

Swapping the min and max bounds of T̂R and/or T̂I in Equation (2) provides a total of 4 distinct rendering
options that correspond to flipping the source image horizontally and/or vertically. Tile appearance can be
additionally manipulated by an optional phase rotation T̂ ← T̂ exp(iφwheel) before source image mapping.

Using the Workflow Parameters to Tune Tile Appearance
The presented method contains several parameters that can be adjusted to aesthetic advantage. It is instructive
to discuss and visually inspect the impact that each of these knobs has on the tile appearance. Obvious key
contributors, besides the source image being used, are the size and bit sequences of the stitch pattern.

Activity matrix size M × N Very small patterns induce somewhat dull and simplistic tiles, while very
large patterns can lead to overcrowded designs that lack overall coherence. I found happy middle ground in
the ranges 9 ≤ M, N ≤ 17. Symmetrically extended x and y bit sequences (indicated with superscript ∗ in
the ID codes) tend to be aesthetically preferable as they create tiles with twofold reflectional symmetry.

Bit flip probability pflip Binary sequences generated with either very low (pflip ≤ 0.1) or very high
(pflip ≥ 0.9) bit flip probabilities induce stitch patterns that strongly evoke the simple dotted or diagonally
striped appearances of the respective two-bit periodic limits from Figure 1, which may not be desirable
(Figure 4). I found pflip = 0.7 to provide a pleasant blend of global coherence and local complexity.
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Figure 4: Impact of bit flip probability pflip on resulting stitch patterns and tile appearance.

Figure 5: Impact of diffusion length parameter λ on an example thermal field and resulting tile appearance.

Diffusion length λ Because Ĝ is exponentially damped, relatively small diffusion lengths (λ ≤ 0.5)
thermally decouple active cells from one another (Figure 5, left two columns). This in turn induces tiles
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with sharply delineated regions of quasi-uniform colour. Longer diffusion lengths (λ ≥ 2) yield more gentle
temperature transitions and bring partial thermal coupling between neighbouring cells into play, giving a
more balanced tile appearance with much more intricate detail (Figure 5, right two columns).

Phase rotation φwheel This parameter does not alter the geometric pattern as such, but strongly affects
the tile colourisation and can thus be used to help accentuate certain regions or edge features (Figure 6). The
impact co-depends on diffusion length. At typical settings λ ≥ 2, |T̂I | tends to be smaller in both magnitude
and range compared to |T̂R |, and consequently T̂I displays a more pronounced sensitivity to phase rotation.

Figure 6: Impact of phase rotation parameter φwheel on the appearance of an example tile.

Extension to Non-Rectangular Tiles via Schwarz-Christoffel Mappings
The recipe from Figure 3 can only produce square (M = N) and rectangular (M , N) tiles. However,
polygonal tiles with any number Npoly ≥ 3 of vertices can be obtained through two consecutive conformal
transformations (Figure 7). I carried out the mappings with the Schwarz-Christoffel Toolbox in Octave [4].

Figure 7: Workflow to generate non-rectangular polygonal tiles through conformal mappings.

First, the field T̂� computed for a square tile is mapped conformally to its image field T̂� on the unit
disc. Combining rotated copies of T̂� (discussed in more detail below) produces a new field T̂∗� on the disc
with Nrot-fold rotational symmetry, which in turn is mapped conformally to the output field T̂4 on the target
polygon. Optional pre-rotation of T̂∗� by a judiciously chosen angle φpoly can help align prominent features
in the artwork with the edge midpoints or vertices of the non-rectangular output tile (Figure 8).

The rotational symmetry extension T̂� → T̂∗� can in principle be achieved through domain colouring of
complex plane maps z� 7→ zNrot

� , but these severely distort the input patterns. I instead opted for two alternate
methods with precautions to avoid excessive self-overlaps of the input pattern. Confining the main features
of T̂� to a corner of the square tile by overriding 3 quadrants of the cell activity matrix to 0 (indicated by a †
in the ID codes) goes a long way. Even so, some remaining subtleties need to be taken into consideration.
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Figure 8: Example impact of disc prerotation parameter φpoly on a regular hexagonal tile.

Figure 9: Example impact of the strategy with which rotated copies of T̂� are blended together into T̂∗�.

Additive superposition (Figure 9, upper pathway) creates hotspots where rotated copies of the input
pattern do happen to overlap. The accumulation of temperature tails tends to affect Im(T̂∗�)more prominently
due to its narrower range. The resulting alterations of the thermal fields can cause the appearance of the
output design to deviate quite strongly from the originating square tile, which may be undesirable.

A winner takes all strategy (Figure 9, lower pathway) provides an alternative approach where the real
and imaginary parts of T̂∗� are constructed separately: for each pixel, we maintain whichever of the rotated
T̂� copies gives the largest absolute value for the respective field component. This preserves a much closer
resemblance to the patterns of the square tile, but can come at the cost of potentially jarring discontinuities.

Speaking of discontinuities: we can ensure uniform colourisation around the polygon tile edges through a
window tapering function fw on the unit disc for which I adopted the form (with rwindow a tuneable parameter):

fw(r� ≤ rwindow) = 1 and fw(r� > rwindow) = 3 u2 − 2 u3 with u = (1 − r�)/(1 − rwindow) . (3)

For standalone tiles, we can simply apply fw directly to the disc field T̂∗�. For tessellations, where a common
edge colour must be enforced among distinct tile designs, I instead interpolate the source image coordinates
into the colour wheel towards a target source pixel ®redge = (xedge, yedge) for points near the polygon edges:

®r ′source = ceil
(
fw(r�) ®rsource + [1 − fw(r�)] ®redge

)
with e.g. ®redge = (Wsource/2,Hsource/2) . (4)

Figure 10 shows an Archimedean tessellation of a square, triangular and hexagonal tile constructed in this
fashion. Note however that the workflow from Figure 7 is by no means restricted to regular output polygons.
Figure 11 presents non-convex flower-shaped polygonal tiles (florygons) comprising 90 vertices. Finally, an
example of a Cairo tiling with 4 differently coloured irregular pentagons is shown in Figure 12.
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Figure 10: Rhombitrihexagonal tessellation of tiles created by the workflows in Figures 3 and 7.

Figure 11: Deconstructed frangipani flower: Decorative non-convex polygonal tiles with 90 vertices.
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Figure 12: Cairo tiling built from 4 differently coloured irregular pentagons.
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