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Abstract  

This paper presents a way to connect approximations of the Sierpinski gasket with colorings of ternary strings. One 

way to model the gasket is with an iterated function system (IFS) that consists of three contractive mappings. An 

approximation is obtained by applying the contractive maps a finite numbers of times to some initial object. The 

gasket is the limit of these approximations. A finite address in the form of a ternary string corresponds to a finite 

composition of the contractive mappings. The Sierpinski arrowhead curve is another model for the gasket, and we 

can use it to provide an ordering of ternary strings that is different from the standard ordering. We present a way 

to associate a ternary string with a color from the CMY color model. Colored approximations can be used to create 

Sierpinski color sequences.  

 

Approximations of the Sierpinski Gasket 

The Sierpinski gasket is a well-known fractal whose boundary is a triangle (either equilateral or right 

isosceles) [6,8,11]. This paper focuses on the right triangle version. We can describe the gasket as illustrated 

by Figure 1. Start with a filled in triangle as the initiator. Join the midpoints of each side with line segments 

to divide the triangle into 4 similar triangles. The generator consists of three filled in triangles (leaving the 

center triangle empty). Repeat this process ad infinitum to obtain the Sierpinski gasket. 

 

                             

Figure 1:  Initiator, generator, and approximations leading to the Sierpinski gasket.  

 

There are different ways to mathematically model the gasket. One method is to use an iterated function 

system (IFS) [2,10]. An iterated function system (IFS) is a collection {𝑓0, 𝑓1, … , 𝑓𝑚−1} where each 𝑓𝑖 is a 

contractive mapping from the plane to itself. An IFS has a unique attractor 𝐴 that is made of smaller versions 

of itself: 𝐴 = 𝑓0(𝐴) ∪ 𝑓1(𝐴) … 𝑓𝑚−1(𝐴) [2]. Starting with any compact set 𝑋, form a sequence of 

approximations {𝐴𝑛}, for 𝑛 ≥ 0, as follows. 𝐴0 = 𝑋 and for 𝑛 ≥ 1: 

𝐴𝑛 = ⋃ 𝑓𝑖(𝐴𝑛−1) = 𝑓0(𝐴𝑛−1) ∪ 𝑓1(𝐴𝑛−1) ∪ … ∪ 𝑓𝑚−1(𝐴𝑛−1)
𝑚−1

𝑖=0
. 

The limit of the approximations as 𝑛 → ∞ is 𝐴 [2]. 𝑋 is often chosen to encompass the attractor. 

Let 𝑇 be the triangular region of the plane consisting of the triangle with vertices (0,0), (1,0), and (0,1) 

along with the interior of this triangle. Let {𝑓0, 𝑓1, 𝑓2} be the contractive mappings defined on the plane by 

𝑓0(𝑥, 𝑦) = (𝑥/2, 𝑦/2), 𝑓1(𝑥, 𝑦) = (𝑥 2⁄ , 𝑦 2⁄ + 1/2), 𝑓2(𝑥 2⁄ + 1 2⁄ , 𝑦 2⁄ ). 
We refer to the set of these maps as the Sierpinski IFS. Figures 2(a) and 2(b) display 𝑇 along with 𝑓0(𝑇), 

𝑓1(𝑇) and 𝑓2(𝑇). 𝑇𝑛 is the level 𝑛 approximation, with 𝑇0 = 𝑇 and 𝑇𝑛 = 𝑓0(𝑇𝑛−1) ∪ 𝑓1(𝑇𝑛−1) ∪ 𝑓2(𝑇𝑛−1) 
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for 𝑛 ≥ 1. Each 𝑇𝑛 consists of 3𝑛 triangular regions whose sides have lengths 2−𝑛.  For a given level 𝑛, each 

triangular region is of the form 𝑓𝑡𝑛−1
∘ 𝑓𝑡𝑛−2

∘ … ∘ 𝑓𝑡0
(𝑇), where each 𝑡𝑖 ∈ {0,1,2}. We can thus identify the 

triangular region in terms of an address 𝑡𝑛−1 𝑡𝑛−2…𝑡0. Figures 2(c) and 2(d) display 𝑇1 and 𝑇2, while Figure 

3 displays 𝑇3 (along with the corresponding addresses of the triangular regions).  

 

    
(a) (b) (c) (d) 

Figure 2: (a) Triangular region T, (b) images of T under 3 contractive mappings of Sierpinski IFS, (c) 

Sierpinski approximation 𝑇1 with addresses of triangular regions, (d) Sierpinski approximation 𝑇2 with 

addresses of triangular regions. 

 

 

Figure 3: Sierpinski approximation 𝑇3 along with addresses of triangular regions. 

 

Another way to model the Sierpinski gasket are the Sierpinski arrowhead curves [1,4,11]. Figure 4 

shows the first five arrowhead curves for the equilateral triangle version of the gasket. The limit of the 

curves is the gasket. Figure 5 shows the Sierpinski arrowhead curves on three Sierpinski approximations. 

 

 

Figure 4: Evolution of Sierpinski arrowhead curves (image attributed to Robert Dickau [4]). 
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Figure 5: Sierpinski arrowhead curves on Sierpinski approximations 𝑇1, 𝑇2 and 𝑇3. 

 

Sierpinski Arrowhead Ordering 

The Sierpinski arrowhead curves are paths between (0,0) and (1,0). For a given level 𝑛, the curve gives a 

way to order the ternary strings of length 𝑛. This ordering is different from the standard ordering. Table 1 

displays the orderings for levels 1, 2, and 3. The ternary strings come in blocks of 3 strings where the digits 

𝑡𝑛−1𝑡𝑛−2…𝑡1  are all the same, and the digit 𝑡0 can be 0, 1, or 2. Let B denote the digits 𝑡𝑛−1 𝑡𝑛−2…𝑡1  for 

a given block. For the standard ordering, blocks of three strings split into three blocks of three strings that 

all have the same order for the final digits (namely 0, 1, 2): 

𝐵0, 𝐵1, 𝐵2 → 𝐵00, 𝐵01, 𝐵02, 𝐵10, 𝐵11, 𝐵12, 𝐵20, 𝐵21, 𝐵22. 

 

Table 1: Orderings of Ternary Strings 

Level Standard Order Sierpinski Arrowhead Order 

1 0, 1, 2 0, 1, 2 

2 00, 01, 02, 10, 11, 12, 20, 21, 22 00, 02, 01, 10, 11, 12, 21, 20, 22 

3 000, 001, 002, 010, 011, 012, 020, 021, 022, 

100, 101, 102, 110, 111, 112, 120, 121, 122, 

200, 201, 202, 210, 211, 212, 220, 221, 222 

000, 001, 002, 020, 022, 021, 012, 010, 011, 

100, 102, 101, 110, 111, 112, 121, 120, 122, 

211, 212, 210, 201, 200, 202, 220, 221, 222 

 

For the Sierpinski arrowhead ordering, one can identify the pattern for how to get the ordering of the 

next level of ternary strings from the previous level. Observe what happens as we go from level 1 to level 

2. The first three strings of length 2 all start with 0, the next three all start with 1, and the last three all start 

with 2. The last digits of the first three strings are in the order 0, 2, 1. The last digits of the middle three 

strings are in the order 0, 1, 2 (same as the order for length 1). The last digits of the final three strings of 

level 2 are in the order 1, 0, 2. In general, this pattern continues. Let 𝑎, 𝑏, 𝑐 denote the elements 0,1,2 in 

some order. A block of three strings splits into three blocks of three strings as follows.  

𝐵𝑎, 𝐵𝑏, 𝐵𝑐 → 𝐵𝑎𝑎, 𝐵𝑎𝑐, 𝐵𝑎𝑏, 𝐵𝑏𝑎, 𝐵𝑏𝑏, 𝐵𝑏𝑐, 𝐵𝑐𝑏, 𝐵𝑐𝑎, 𝐵𝑐𝑐. 

The first block of three permutes the last digit of its parent block by switching the second and third and 

keeping the first the same, the middle block keeps the same order, and the last block switches the first and 

second and keeps the third the same. For example, to go from level 3 to level 4, the first block of three 

strings has 𝐵 = 00 and 𝑎 = 0, 𝑏 = 1, 𝑐 = 2: 

000, 001, 002 → 0000, 0002, 0001, 0010, 0011, 0012, 0021, 0020, 0022. 

The next block has 𝐵 = 02 and 𝑎 = 0, 𝑏 = 2, 𝑐 = 1: 

020, 022, 021 → 0200, 0201, 0202, 0220, 0222, 0221, 0212, 0210, 0211. 
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Is there a way to visualize how the Sierpinski arrowhead ordering is different from the standard 

ordering? The strings are ternary so one way is to associate each string with a color somehow. 

 

Converting Ternary Strings to Colors in CMY Model 

This paper uses the CMY color model [3,9]. In this color model, a color is specified by a CMY vector of 

the form (𝐶, 𝑀, 𝑌), where the components of the vector are non-negative integers between 0 and 255. There 

are three strings of length 1. This paper follows the choice of associating magenta (M) with 0, yellow (Y) 

with 1, and cyan (C) with 2. This choice is a personal choice based on my own experimentation with 

different color models and color choices. In particular, I liked the CMY model compared to the RGB model 

because the colors seem softer and brighter to me. My son often complains that I wear only black so this 

was perhaps my way of brightening up. 

To develop a method of converting a ternary string to a color, there are a few conditions we want to 

satisfy. The string of all 0s is M, the string of all 1s is Y, and the string of all 2s is C. For a given level 𝑛, 

the 3𝑛 ternary strings should correspond to 3𝑛 distinct colors. A ternary string of length n of the form 

𝑡𝑛−1𝑡𝑛−2 … 𝑡2𝑡1𝑡0, where each 𝑡𝑖 ∈ {0,1,2}, corresponds to a color vector in the CMY model as follows. 

We first convert the ternary string to a vector with three binary strings of length 𝑛. These vectors are of the 

form (𝑐𝑛−1𝑐𝑛−2 … 𝑐0, 𝑚𝑛−1𝑚𝑛−2 … 𝑚0, 𝑦𝑛−1𝑦𝑛−2 … 𝑦0) where for 0 ≤ 𝑖 ≤ 𝑛 − 1: 

 𝑐𝑖 = {
1 𝑖𝑓 𝑡𝑖 = 2
0 𝑖𝑓 𝑡𝑖 ≠ 2

,    𝑚𝑖 = {
1 𝑖𝑓 𝑡𝑖 = 0
0 𝑖𝑓 𝑡𝑖 ≠ 0

,    𝑦𝑖 = {
1 𝑖𝑓 𝑡𝑖 = 1
0 𝑖𝑓 𝑡𝑖 ≠ 1

. 

Note that for a given 𝑖, exactly one value of 𝑐𝑖, 𝑚𝑖 or 𝑦𝑖 equals one, the others are all 0. The binary sum of 

the three binary strings is the binary string of all 1s: 

𝑐𝑛−1 … 𝑐0 + 𝑚𝑛−1 … 𝑚0 + 𝑦𝑛−1 … 𝑦0 = 11 … .1. 
For a given 𝑛, the binary string of all 1s converted to decimal is 2𝑛−1 + 2𝑛−2 + ⋯ + 4 + 2 + 1 = 2𝑛 − 1. 
We define the unit color amount 𝑈𝑛 to be the floor of 255 divided by 2𝑛 − 1 (we need an integer value for 

the CMY vectors and we can’t have values over 255 so the floor gives the greatest integer value less than 

or equal to the fraction). 

𝑈𝑛 = ⌊
255

2𝑛 − 1
⌋. 

Thus the color (𝐶, 𝑀, 𝑌) is found from the ternary string by first finding the three binary components, 

converting each of the binary components to decimal, and then multiplying by the unit color amount: 

(𝐶, 𝑀, 𝑌) = ((𝑐𝑘−1 … 𝑐0)10𝑈𝑘 , (𝑚𝑘−1 … 𝑚0)10𝑈𝑘 , (𝑦𝑘−1 … 𝑦0)10𝑈𝑘   ) 

For example, consider the length 3 string 012. The unit color amount for level 3 is 36. 

(𝐶, 𝑀, 𝑌) = ((001)10 × 36, (100)10 × 36, (010)10 × 36 ) = (36,144,72). 

 

Table 2 presents the conversion details for  length 

1 and Table 3 has length 2. We can compare the 

orderings with colored number lines. For strings of 

length 1, the orderings are the same (see Figure 6). 

Figures 7 and 8 display the colored number lines 

for length 2 and Figure 9 displays length 3. 

 

Table 2:  Ternary Conversion for Level 1. 

Ternary 

string 

Binary 

Vector 

CMY 

Vector 
Color 

0 (0,1,0) (0,255,0)  
1 (0,0,1) (0,0,255)  
2 (1,0,0) (255,0,0)  

 

Table 3: Ternary Conversion for Level 2. 

Ternary 

string  

Binary 

Vector 

CMY 

Vector 
Color 

00 (00,11,00) (0,255,0)  
01 (00,10,01) (0,170,85)  
02 (01,10,00) (85,170,0)  
10 (00,01,10) (0,85,170)  
11 (00,00,11) (0,0,255)  
12 (01,00,10) (85,0,170)  
20 (10,01,00) (170,85,0)  
21 (10,00,01) (170,0,85)  
22 (11,00,00) (255,0,0)  
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Figure 6: Standard and Sierpinski arrowhead ordering of ternary strings of length 1. 

 

 
00              01                02               10               11               12               20               21               22 

Figure 7: Standard ordering of ternary strings of length 2. 

 

 
00              02                01               10               11               12               21               20               22 

Figure 8: Sierpinski arrowhead ordering of ternary strings of length 2. 

 

 
 

 

Figure 9: Standard (top) and Sierpinski arrowhead (bottom) ordering of ternary strings of length 3. 

 

The colored number lines are a visual way to compare the orderings. Consider length 2. In the standard 

order, 10 follows 02. The color jumps from (85,170,0) to (0,85,170) while in the Sierpinski arrowhead 

order, 10 follows 01 so the color jumps from (0,170,85) to (0,85,170). This jump feels more jarring in the 

standard ordering. By level 3, the colors flow more smoothly in the Sierpinski arrowhead ordering 

compared to the standard ordering. One could argue that the Sierpinski arrowhead ordering is more 

aesthetically pleasing because of how the colors change more consistently. 

We can quantify the change in colors as follows. Given two CMY vectors, define the difference 𝐷: 

𝐷 = |∆𝐶| + |∆𝑀| + |∆𝑌|. 

The jump from 02 to 10 in the standard order has 𝐷 = |0 − 85| + |85 − 170| + |170 − 0| = 340 while 

the jump from 01 to 10 has 𝐷 = |0 − 0| + |85 − 170| + |170 − 85| = 170. In general, at a given 𝑛, the 

biggest change occurs going from the string 02 … 2 to 10 … 0 (or 12 … 2 to 20 … 0) with  

𝐷 = |0 − (2𝑛−2 + ⋯ 2 + 1)𝑈𝑛| + |(2𝑛−2 + ⋯ 2 + 1)𝑈𝑛 − 2𝑛−1𝑈𝑛| + |2𝑛−1𝑈𝑛 − 0| = 2𝑛𝑈𝑛. 

The minimum change occurs going from 0 … 00 to 0 … 01 with 𝐷 = 2𝑈𝑛. It is possible to get a change of 

2𝑘𝑈𝑛 for 1 ≤ 𝑘 ≤ 𝑛 − 1. In contrast, with the Sierpinski arrowhead ordering the changes are all equal to 

2𝑈𝑛. Going from one string to the next is either a change in the last digit or the last two digits are switched. 

In either case the overall net change is 2𝑈𝑛.  

 

Sierpinski Color Sequences 

Now that we have a way to associate a color with a ternary string, we can color the triangular regions of 

Sierpinski approximations according to their addresses. The Sierpinski arrowhead ordering shows how a 

path that starts from the lower left corner (the triangular region that includes the point (0,0)) moves through 

every triangular region of an approximation and ends at the lower right corner (the triangular region that 

includes the point (1,0)). The first two colored approximations (with addresses) of the Sierpinski gasket are 

displayed in Figures 10(a) and 10(b). Figure 10(c) displays a coloring of 𝑇2 that uses the RGB model instead 

of the CMY. In the RGB coloring: 0 is associated with red, 1 with green, and 2 with blue. This image is 

included to help explain my preference for the CMY model. Figure 11 displays the colored approximations 

𝑇3 (with addresses) and 𝑇4 (without addresses because the triangular regions are so small).  
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(a) (b) (c) 

Figure 10: (a), (b) Colored Sierpinski approximations 𝑇1, 𝑇2 (with addresses), (c) 𝑇2 colored using RGB 

color model. 

 

              

Figure 11: Colored Sierpinski approximations 𝑇3 (with addresses) and 𝑇4 . 

 

Colored Sierpinski approximations can be used to create other objects. The arrangements into square 

tiles follows from previous work [14,15]. In the previous work, the tiles were created with the actual fractals 

while here we use colored approximations. A given arrangement is shown for the first three approximations 

from the sequence of approximations, hence I call them “Sierpinski Color Sequences”. I have chosen a 

small selection of arrangements that are appealing to me. It is interesting that we only need a few levels to 

appreciate the beauty of the colored approximations. Figure 12 displays an arrangement of eight triangles 

and the corresponding sequence. This arrangement possesses all eight symmetries of the square. See [15] 

for more details about the symmetries of the square. 

 

 
   

 Figure 12: Sierpinski color sequence with all symmetries of the square. 
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Figure 13 displays an arrangement of eight triangles that has horizontal, vertical and 180° rotational 

symmetries. Figure 14 displays an arrangement of two triangles that has one diagonal symmetry. Figure 15 

displays an arrangement of four triangles that has 180° rotational and both diagonal symmetries. Quilt 

makers will recognize elements of some standard quilt blocks in these arrangements: Figure 12 with the 8-

Pointed Star, Figure 13 with Twelve Triangles, Figure 14 with the Sawtooth Square, and Figure 15 with the 

Square Upon Square [5]. See [7] for a wonderful paper on the mathematics of quilting. Of course we can 

go beyond squares to other objects. Figure 16 displays a sequence of pinwheels each made from eight 

approximations and a sequence of spirals also made from eight approximations.  

 

 
   

Figure 13: Sierpinski color sequence with horizontal, vertical, and 180° rotational symmetries. 

 

 
   

Figure 14: Sierpinski color sequence with one diagonal symmetry. 

 

 
   

Figure 15: Sierpinski color sequence with 180° rotational and both diagonal symmetries. 

 

   

   

Figure 16: Sierpinski color sequences of pinwheels and spirals. 
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Summary and Conclusions 

This paper has presented a way to color Sierpinski approximations that can be used to create beautiful 

images. The Sierpinski IFS consists of three contractive mappings, so approximations can be expressed in 

terms of addresses that are ternary strings. The initial idea for using color came from the realization that the 

Sierpinski arrowhead curves give an ordering to the ternary strings that is different from the standard 

ordering. The use of color helps to visualize how the ordering is different. Future work includes coloring 

of Sierpinski approximations for the equilateral triangle version of the gasket. While the colored 

approximation of the equilateral triangle version is just a linear transformation of the right triangle version 

(the addresses work the same way), one can use equilateral triangles for different kinds of tilings like 

hexagonal ones. Approximations of other fractals that are generated by IFS consisting of three maps could 

be colored using the same method. For example, coloring the approximations of the Sierpinski relatives 

[12,13] could produce some beautiful images and provide a way to understand the maps of the IFS. More 

concretely, the Sierpinski color approximations and sequences could be used in quilting.  
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