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Abstract  

This is an attempt to generalize the concept of the geometrically regular shapes of the Platonic polyhedra to objects 
with curved edges and faces that are all identical, and where faces are not restricted to be topological disks.  Some 
of the objects studied, are “globes” of genus zero, bi-pyramids, and Platonic edge-frames with twisted branches, as 
well as mathematical knots embedded as edges on the surface of handle-bodies of higher genus. 

 
Introduction 

In the five Platonic polyhedra, all vertices, (straight) edges, and (planar) faces are exactly the same. 
Moreover, all flags (combinations of a vertex and its adjoining edges and faces) can be transitively 
transformed into one another using a symmetry of the polyhedron.  A generalization of those geometrically 
regular shapes allows edges to be curved, and faces to be non-planar. 

In topological graph theory, a regular map is a conceptual decomposition of a two-dimensional 
manifold (such as a sphere, torus, or Klein bottle) into topological disks, so that every flag can be 
transformed into any other flag by a topology-preserving operation.  For most regular maps [2] no 
geometrically regular realization is possible in 3D Euclidean space. 

In this paper, I am studying the tessellation of orientable handle-bodies into more general regular 
geometrical shapes that have all identical flags, and their “faces” or “countries” are not limited to 
topological disks; they may be of higher genus (i.e., disks with holes).  I introduce my exploration with a 
generalization of the Platonic polyhedra to geometrically regular shapes of genus zero with curved features.  
Then I expand the scope to shapes of higher genus, like Tord Tengstrand’s intriguing “3-2-1”-sculpture [6], 
presented at Bridges 2020, and to some derivative bi-pyramidal designs [4].  I continue with regular 
tessellations on symmetrical handle-bodies that are derived from the edge-structures of the Platonic solids.  
I also explore shapes derived from symmetrical configurations of mathematical knots.  The search for other 
families of geometrically regular shapes continues. 
 

Geometrically Regular Globes 
A simple approach to construct “Platonic” objects with curved features, is to project the Platonic polyhedra 
onto their circum-spheres, as is shown in Figure 1(a) for the pentagonal dodecahedron. In this 
transformation, the edges become simple circular arcs, and the faces become spherical patches.   Clearly, 
the congruence between the vertices, edges, and faces is maintained. 

            
                  (a)                                    (b)                                     (c)                                       (d)    
Figure 1:  Platonic dodecahedral balloon globes: (a) spherical shape;  (b) straight edges, concave faces;   

(c) straight edges, convex faces;  (d) 3D-print with curved edges, undulating faces. 
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But there are many more degrees of freedom to make shape changes that still maintain the “Platonic” 
topology.  Another simple transformation maintains the straight edges but makes the polyhedron surface 
from some stretchable material, like a rubber balloon.  If the air pressure inside the balloon is lower than 
the pressure on the outside, all faces will warp into concave areas with positive Gaussian curvature (Fig.1b).  
If the outside pressure is lower than the inside pressure, the faces will form outwards bulges, also with 
positive curvature (Fig.1c).   

To obtain even fancier shapes, the edges can be given an “S”-shape with rotational C2-symmetry 
around their midpoints (Fig.1d).  With the surface material mimicking the properties of a soap film and 
even pressures on the inside and outside of the Platonic ball, all the faces would become minimal surfaces 
with negative Gaussian curvature.  All of these shapes maintain the symmetry of the oriented dodecahedron. 

Figure 1 inspired me to construct geometrically regular shapes of genus zero that have a number of 
vertices that does not appear in the Platonic polyhedra. With only two vertices, we can form hosohedra 
with any number of slices for all positive integer numbers.  The classical trigonal hosohedron is shown in 
Figure 2(a).  But now we can give the edges running from the North pole to the South pole more interesting 
shapes than simple circular arcs.  In Figure 2(b) the edges have a planar, undulating shape.  In Figure 2(c) 
I have twisted a 9-sided hosohedron, so that its edges take on spiraling, helical shapes.  We can even draw 
a map with just one vertex on a single C2-symmetrical, closed-loop edge, which partitions the sphere into 
two identical halves (Fig.2d).  All of these constructions are geometrically regular.   

                  
                     (a)                               (b                                  (c)                                        (d) 

Figure 2:  (a) Trigonal hosohedron; (b) 3-sided hosohedron with planar, non-circular edges;  
 (c) twisted 9-sided hosohedron;  (d) a regular shape with a single vertex.  

 
The duals of the hosohedra are the dihedra.  Figure 3(a) shows a pentagonal dihedron.  This structure now 
allows us to place any number of vertices along an equatorial circle and modify the edge segments between 
neighbors, ‒ for instance into an undulating “S”-shape (Fig 3b).  We can even alternatingly offset the 
vertices from the equatorial plane, while keeping all edges straight (Fig.3c), or giving them C2-symmetry 
about the edge midpoint. 

              
                         (a)                                                 (b)                                                    (c) 

Figure 3:  (a) Pentagonal dihedron;  (b) “wavy” 12-vertex dihedron;  (c) 24-vertex dihedron  
with vertices that are vertically offset from the equatorial plane. 

 
This is already a surprisingly rich set of possible regular “Platonic” surfaces.  But the exploration gets even 
more interesting, when we start looking at handle-bodies of higher genus. 
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Bi-Pyramid Structures:  Tord Tengstrand’s “3-2-1”-Sculpture and Derivatives 
This exploration was inspired by an intriguing sculpture (Fig.4a) titled “3-2-1”, presented by Tord 
Tengstrand [6] in the Bridges 2020 Art Exhibition.  It has three curved edges, two “pointy” vertices, but 
only one complicated curved “face,” which is topologically equivalent to a disk with two holes.  This 
surface is formed by three “ribbon-countries” lying between the three sharp edges that have a dihedral angle 
of about 60 degrees (shown in red, green, and blue) (Fig.4b).  The edges each connect the two vertices by 
a vertical “down-up-down” zig-zag move, while passing the equatorial plane between the two vertices three 
times.   I call this a 3-pass edge.  The ribbon countries have a similar 3-segment zig-zag shape, and their 
ends join in the two 3-way junction areas into a single smoothly-connected face.  The result is the orientable 
surface of a solid handle-body of genus 2, corresponding to a 2-hole torus or, equivalently, to the thick shell 
of a hollow sphere with three “tunnels” or “windows” to the interior void.  This genus 2 handle-body has 
3-fold rotational D3-symmetry around an axis that passes through the two (black) vertices in Figure 4(b).  
  

                 
               (a)                              (b)                               (c)                             (d)                             (e) 
Figure 4:  (a) Tengstrand’s “3-2-1”-sculpture;  (b) CAD model showing the 2 vertices and the 3 edges;  

(c) modular starting geometry;  (d) polyhedral shape;  (e) smoothed by Catmull-Clark subdivision. 
 
A practical way to model the target shape (Fig.4a) is to form the three solid branches with 3-sided prismatic 
(yellow) beams (Fig.4c), which are then twisted and connected to the two 3-sided (blue) pyramids that 
support the top and bottom vertices.  This results in a polyhedral model (Fig.4d).  The facets that form the 
ribbon-countries are combined, and the edges between them are labeled as “sharp.”  The model is then 
subjected to three levels of Catmull-Clark subdivision [1] in which the designated “sharp” edges maintain 
their dihedral sharpness.  This results in nice, smoothly-shaped face strips (Fig.4e), even when the starting 
polyhedral model is rather coarse.   

Changing the Genus by Constructing “N-2-1”- Bi-Pyramids 
Tord Tengstrand’s sculpture inspired me to design other derivative shapes with interlinked curved 

edges and a complex symmetrical surface with a genus greater than two.  In my first effort to extend the 
Tengstrand family, I simply increased the rotational symmetry of the original bi-pyramidal structure [4]. 

Figures 5(a,b) show the construction of a “4-2-1”-handle-body of genus 3, with overall D4-symmetry.  
Figures 5(c,d,e) show models of D5-designs.  Figure 5(c) shows the five interlinked loopy edges, and Figure 
5(e) is a model made on a low-end 3D-printer [7] by converting the surface geometry to an STL-file.  In all 
these bi-pyramid structures, the edges still make three passes through the central equatorial plane when 
going from one vertex to the other one.   

A similar approach also allowed me to make a bi-pyramid with only two branches (Fig.5f).  
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           (a)                          (b)                         (c)                       (d)                     (e)                         (f) 

Figure 5:  Bi-pyramidal structures with 3-pass edges:  (a, b) 4-branch “4-2-1”-models of genus 3;  
(c ,d, e) 5-branch models and sculpture;   (f) 2-branch “2-2-1”-bi-pyramid sculpture of genus 1. 

More Complicated, Multi-Pass Edges 
Another way to extend the bi-pyramid family is to use more complicated edge curves, e.g., edges that 

pass the central void five times on their way from one vertex to the other one (Fig.6a).  These 5-pass edges 
can be used on bi-pyramids with any number of branches.  To accommodate all the extra curve segments, 
all branches of the bi-pyramid now have a pentagonal cross-section (Figs.6b,c).  We can also use a 5-pass 
edge on a 2-branch structure (Fig.6d); the edge now travels five times through each of the two branches.   

As an extreme case, we might ask, what would happen if we had just a single 5-sided prismatic branch 
connecting the two pyramid tips.  Topologically this becomes equivalent to a hosohedron with a single edge 
connecting the two poles: but this edge now zig-zags up/down past the middle five times (Fig.6e).   

                    
                  (a)                          (b)                          (c)                                (d)                            (e)                           

Figure 6:  5-pass edges between the two pyramid tips:   (a) one edge;   (b) 3-branch “3-2-1”-model;   
(c) 6-branch “6-2-1”-model;  (d) 2-branch toroid;  (e) 5-pass edge on a single-slice hosohedron. 

 
All of these shapes are geometrically regular;  their edges and vertices are all the same, and there is just a 
single smoothly-connected “face” that has the appropriate symmetry corresponding to the number of edges 
and the valence of the two vertices.  Of course, when there is just a single edge, the concept of geometrical 
regularity becomes rather “anemic.”   This single edge must have C2-symmetry around its mid-point, so 
that the two vertices “are the same” and can be transformed into one another with a 180° rotation. 

When we use 4-pass edges (Figs.7a-e), or, more generally, edges with an even number of passes, a 
complication arises.  Now each edge ends on the same vertex that it started from, and the bi-pyramid needs 
to have an even number of branches.  This reduces the rotational symmetry by a factor of two.  Moreover, 
there is an interesting effect:  The extra central bend in the edge curve (Figs.7a,b) cuts off the access of one 
of the ribbon countries to one of the two shared junction areas located at the bases of the two pyramids.  
Still, the four initial ribbon countries between the four edge curves can meet in pairs at the two junction 
areas, resulting in two smoothly-connected Tengstrand “faces,” shown in yellow and green in Figure 7(c).  
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Similarly, 4-pass edges on a 6-branch bi-pyramid also divide the surface area into separate “faces.”  If the 
loopy edges starting at the top and bottom vertices are properly oriented against one another, three of the 
initial ribbon countries merge in the top junction area (blue), and the other three join in the bottom (red) 
junction, resulting in just two final “faces” (Fig.7d).  However, if one set of edges is rotated by 120°, one 
set of three ribbon countries (white) merge redundantly in both junctions, thus preventing the other three 
countries from accessing any junction area; they thus remain isolated, and there are then four separate, 
smoothly-connected “faces” (Fig.7e).  But they are not all the same, and this is no longer a regular object. 
 

             
                (a)                           (b)                            (c)                              (d)                               (e)                      

Figure 7:  4-pass edges:  (a) One 4-pass edge;  (b) 4-branch model;   (c) 4-branch “4-2-2”-sculpture;   
  (d) regular 6-branch “6-2-2”-shape;  (e) non-regular “6-2-4”-shape.   

 
Platonic Edge-Frames with Twisted Branches 

If I split Tengstrand’s original “3-2-1”-sculpture along the equatorial plane into two equal halves, I obtain 
two pyramids with three prismatic “legs.”  By adjusting the angles between those legs, I can create a 
modular corner unit, where four of them can combine into a tetrahedral frame (Fig.8a).  Maintaining the 
original twist in the legs, I obtain an interesting object (Fig.8b).  It has six 3-segment (purple) edges (Fig.8c) 
between pairs of vertices and also six 3-segment (yellow) ribbon countries (Fig.8d) between two (blue) 3-
way junction areas.  All the ribbon countries connect through the four junction areas into a single, multi-
branch, smoothly-connected Tengstrand “face.”  In this handle-body it was possible to make all the edges 
and vertices congruent to one another; so this is also a geometrically regular object, and in Tengstrand’s 
“E-V-F”-notation this is a “6-4-1”-structure. 

             
                     (a)                                               (b)                                     (c)                                (d)                      

Figure 8:  Tetrahedral edge-frame:  (a) Four 3-leg pyramids;  (b) smoothed frame;  (c) one 3-segment 
(purple) edge between two vertices;  (d) one 3-segment ribbon country between two (blue) junctions. 

 
This same treatment can be applied to all five symmetrical frames based on the edge structures of the 
Platonic solids.  The resulting number of “faces” may differ for different numbers of segments in the edges 
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(or ribbon-countries).  Figures 9 and 10 show some examples.  If I give the tetrahedral frame pentagonal 
prism branches to accommodate 5-segment edge, all ribbon countries still merge with all the other ribbon 
countries into a single Tengstrand face, resulting in another “6-4-1”-structure (Fig.9a).  When the cube-
frames are covered with 3- or 5-segment ribbon countries, three ribbon-countries merge in a pair of two 
opposite 3-way junction areas, resulting in “12-8-4”-structures (Figs.9b,c).  Similarly, in a 3-segment 
octahedral frame,  four 3-segment ribbon-countries merge in two opposite 4-way junction areas, resulting 
in a “12-6-3”-structure (Fig.9d).   

             
                   (a)                                        (b)                                    (c)                                    (d)                      

Figure 9:  (a) 5-segment tetrahedral frame;  (b) 3-segment cube-frame;  (c) 5-segment cube-frame;   
(d) 3-segment octahedral frame forming a “12-6-3”-structure. 

 
However, when we use pentagonal branches and 5-segment edges on the octahedral frame, all ribbon-
countries merge into one single “face” (Fig.10a).  In 3-segment or 5-segment dodecahedral frames all 
ribbon-countries also join into just one single face, forming a “30-20-1”-Tengstrand-structure (Fig.10b).  
Similarly, for icosahedral frames, both the 3-segment version (Fig.10c), as well as a 5-segment version, 
have just a single face, and they form “30-12-1”-structures. 

             
                   (a)                                      (b)                                   (c)                                       (d)                      

Figure 10:   (a) 5-segment octahedral frame;  (b) 5-segment dodecahedral frame;  
 (c) 3-segment icosahedral frame;  (d) 3-segment cuboctahedral “24-12-4”-frame. 

         
More Twisted Frame Structures  ‒  Ongoing Work 

The exploration of twisted frames is far from complete.  Some Archimedean solids also have all identical 
edes that may lead to the construction of geometrically regular frames.  Figure 10(d) shows a 3-segment 
cuboctahedral “24-12-4”-structure, with the four merged super-countries shown in different colors. 

Several other issues need to be studied further.  Will the 4-pass edges, based on the 4-leg corner module 
used in Figure 7(c), cause extra problems as they did for the 4-branch bi-pyramids, or will even-numbered 
segments lead to additional interesting structures with more than just one face?  In all the frame structures 
studied so far, the twist of the individual branches has been kept to a minimum.  Will increased twistiness 
lead to conceptually new structures?  Are there other approaches that lead to new families of geometrically 
regular shapes?  It seems plausible that all of them need to start from a handle-body with all identical 
handles.  Would it be possible to embed a geometrically regular edge-pattern on a frame that replaces every 
edge of a Platonic solid with two side-by-side branches?   
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Toroidal Handle-Bodies of Genus One 
Another approach to constructing geometrically regular handle-bodies starts with tubular shapes following 
toroidal rings or mathematical knots.  On a simple torus, one can run a single circular edge connecting the 
outermost points in the equatorial plane.  Inspired by the n-sided dihedra (Fig.3), we can then place 
gratuitously many vertices on this edge and obtain a regular shape with just a single face; and we even have 
the freedom to modify the edge segments between neighboring vertices in a consistent manner (Fig.11a), 
maintaining a geometrically regular “n-n-1”-structure. 

If the toroid has less rotational symmetry, e.g., 3-fold as in the trefoil knot (Fig.11b), then this defines 
the number of vertices that must be placed in corresponding locations on the edge loop.  This allows us to 
take a symmetrical layout of a mathematical knot and turn it into a geometrically regular object.  The 
pentafoil (Fig.11c) then becomes a “5-5-1”-structure.  Knot_6_3 (Fig11.d) also can give rise to a 
geometrically regular “2-2-1”-structure.  Even knot_7_6 can be drawn with 2-fold symmetry (Fig11.e).  But 
the two points where the knot curve crosses the 2-fold symmetry axis of the layout are not congruent.  
Placing just a single vertex at one of these two points leads to a “1-1-1”-structure, in which every vertex, 
edge, or face maps onto itself.  However, this renders the concept of “geometrical regularity” rather useless. 

                 
                 (a)                              (b)                               (c)                                (d)                         (e)                 

Figure 11:  (a) Toroids with 12 vertices on the outer equatorial circle;  (b) single-edge trefoil knot;   
(c) pentafoil knot;  (d), 2-fold symmetrical layout of knot_6_3;  (e) a special layout of knot_7_6. 

 
Interesting constructions emerge when we run more than one edge along the toroidal tube, essentially 
forming identical, intertwined torus knots that actually partition the toroidal surface.  Figure 12(a) 
symmetrically interlinks two (1,2)-torus knots with a phase shift of 180° between them, resulting in two 
interleaved ribbon-country loops and forming a “2-2-2”-structure.  Figure 12(b) interlinks four (1,1)-torus 
knots with four interleaved ribbon-country loops between them, forming a “4-4-4”-structure. 

            
              (a)                                (b)                             (c)                            (d)                            (e)               
Figure 12:  (a) Toroidal “2-2-2”-structure;  (b) toroidal “4-4-4”-structure;  (c) tubular dodeca-frame; 
(d) 10 super-countries on a tubular dodecahedron (by P. Gailiunas);  (e) twisted dodecahedron frame. 

 
Another productive way to model regular handle-bodies starts with a symmetrical tubular frame, as shown 
for the dodecahedron (Fig.12c).  To implement an  n-pass edge network, we then paint  n  identical helical 
“edge”-curves onto each tube segment, which we then connect to one another as well as to single vertices 
at the tip of each frame corner.  This partitions the overall tubular surface into  n-segment ribon-countries, 
many of which smoothly connect to one another at the junction areas inside each corner.  Paul Gailiunas 
has found several interesting configurations that result in more than just one single final face.  Figure 12(d) 
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shows a particularly nice “30-20-10”-structure on a dodecahedral frame, which results when each branch 
has an enhanced twist of 144°, rather then the minimal twist of 72°.  This finding then allowed me to design 
a correspomding twisted polyhderal frame (Fig.12e).  One of the ten super-countries has been highlighted. 

Another source of inspiration for developping geometrically regular shapes are the crocheting models 
by Dong and Torrence.  Figure 13(a) shows a trefoil knot embedded in a handle-boduy of genus 2, which 
was given to me by Eve Torrence.  It is based on a design by Shiying Dong [3].  It can be understood as the 
orientable, two-sided Seifert-surface [8] of a trefoil knot (Figs.13b,c,d), where the “soap-film”-surface has 
been thickened to form a solid handle-body of genus 2.  The trefoil is now a line embedded on this handle-
body.  Three vertices can be placed at the outermost points of the three lobes.  This results in a geometriclly 
regular object with a “3-3-2”-structure (Fig.13e). 

.                
                 (a)                             (b)                             (c)                              (d)                            (e)                      

Figure 13:  (a) Crocheted trefoil knot on a genus-2 handle-body;  (b,c,d) Seifert surfaces on trefoils;   
(e) geometrically regular CAD-model with trefoil knot emphasized. 

 
In summary, several approaches have been presented to create a few families of shapes that are 
geometrically regular.  Probably, there are other approaches that can lead to additional interesting regular 
shapes.  Perhaps some regular maps [2] can be instantiated with enough symmetry, so that they can be 
made geometrically regular.  But even more exciting would be to find new regular shapes where the faces 
are of non-zero genus.  I would like to hear from interested readers, so that the exploration can be widened. 
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