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Abstract
Like fractals, melodies can be self-similar, i.e., contain a stretched out copy of themselves. The factor by which one
stretches need not be an integer, and in such cases interesting polyrhythms can arise. Further, self-similar melodies can
act like strange attractors, where pseudo-random melodies evolve into self-similar ones. We explore many examples
of self-similar melodies and emphasize how one can use these in compositions, ultimately culminating in musical
realizations of both polyrhythmic, self-similar melodies and strange attraction.

Introduction

A melody is a sequence of notes in a composition which can act as a musical fingerprint for the piece. Like
the theme from Beethoven’s Ninth Symphony, melodies are often repeated within the work, sometimes played
by different instruments/voices, with a new root note, or even at a different tempo. In this way, melodies
can exhibit approximate translational symmetry, where the translation happens with respect to time. Other
symmetries of melodies may be present as well, and here we are interested in symmetries where the melody
contains a stretched out copy of itself. In order to describe such symmetries, we first label the pitches for notes
in our scale using the set of integers Z. We assume that our scale is the familiar 12-tone equal temperament
found on modern pianos, and then we consecutively number the keys where 0 corresponds to middle C. See
Figure 1. In particular, if 𝑚 > 0 is an integer, then 𝑚 represents the pitch of the note 𝑚 semitones higher
than middle C, and −𝑚 represents the pitch of the note 𝑚 semitones below middle C. In addition to integers
representing pitches of notes, we use symbols 𝑅 and 𝑆 to denote a rest or sustain, respectively. Here 𝑅 and
𝑆 can be taken as any non-integer real numbers with 𝑅 ≠ 𝑆. Using these conventions allows us to view a
melody as a sequence (𝑠0, 𝑠1, 𝑠2, . . .) where each term 𝑠𝑘 lives in Z ∪ {𝑅, 𝑆} and represents one beat in the
melody. Each beat lasts the same length of time, and 𝑠𝑘 tells us what happens after 𝑘 beats of time have
elapsed. Thus 𝑠0 corresponds to the first beat of the melody, 𝑠1 corresponds to the second beat of the melody,
and so on. Here if 𝑠𝑘 is an integer, it represents the pitch of a note played at the position indicated by the
index 𝑘 . When 𝑠𝑘 = 𝑆 this indicates that a note being played at the previous beat is to be sustained for another
beat. If 𝑠𝑘 = 𝑅, no note is played or sustained at position 𝑘 and we rest for one beat.

To illustrate how a sequence can encode a melody, we show in Figure 2 the scores and sequences
representing two well-known melodies. The top shows the opening vocal line in “Over the Rainbow”

Figure 1: Pitches of notes labeled with integers on a keyboard
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Some- where O- ver the Rain- bow
(0, 𝑆, 𝑆, 𝑆, 12, 𝑆, 𝑆, 𝑆, 11, 𝑆, 7, 9, 11, 𝑆, 12, 𝑆)

(2, 1, 2, 1, 2, 𝑆, 𝑅, 𝑅, 2, 1, 2, 4, 6, 4, 6, 7, 9, 7, 9, 7, 9, 𝑆, 𝑅, 𝑅)

Figure 2: Score and sequence for “Over the Rainbow” (top) and “The Marriage of Figaro” (bottom)

famously sung by Judy Garland in The Wizard of Oz. The bottom shows the opening theme from “The
Marriage of Figaro - Overture” by Mozart. Note that a sequence representing a melody does not specify a
particular tempo or time signature and that each index in the sequence specifies one beat of the smallest note
duration present. For instance, in both of our examples seen in Figures 2 the smallest note duration is an
eighth note, so each term in the corresponding sequences represents one beat of an eighth note.

Periodic and Self-Similar Melodies

With the notation introduced above, a melody with translational symmetry—an indefinitely repeating
melody—is represented by a sequence (𝑠𝑘)∞𝑘=0 which is periodic modulo some positive integer 𝑛, i.e.,
𝑠𝑘 = 𝑠𝑘+𝑛 for all 𝑘 ≥ 0. Thus

𝑠𝑘 = 𝑠𝑚 whenever 𝑘 ≡ 𝑚 (mod 𝑛). (1)

In particular, 𝑠0 = 𝑠𝑛 = 𝑠2𝑛 = . . ., so whenever the index reaches a multiple of 𝑛 the melody starts over
again. The modulus 𝑛 serves as the length of the melody as measured by the number of beats. Like a linear
motif repeated along a border in an architectural design, melodies do not actually repeat indefinitely, but
making this assumption allows us to classify the possible symmetries. This is explained nicely by Vi Hart in
a past article of these proceedings [4] (see also Chapter 9 in Benson’s book [3]). Although Hart considers
color patterns (e.g., same melody played by different instruments) and wallpaper groups, we are assuming
there is only one voice/instrument and that we already have translational symmetry. Thus the only possible
symmetries which are isometric (i.e., preserve distances between notes in both time and pitch) correspond to
the seven classical frieze groups. These groups are generated by the translation in time plus one or more of
the following: horizontal reflection, vertical reflection, 180◦ rotation, and glide reflection.

Here we are interested in further symmetries where we do not require distances in time to be preserved.
Namely, we can adapt the notion of self-similar geometric objects to the context of melodies as in [1], [2],
[5]. In the same way that the Sierpinski triangle contains a scaled down copy of itself (in fact, infinitely many
copies), melodies can contain scaled up copies of themselves, but in the case of a melody we will only hear
finitely many copies in any particular composition.

Let 𝑎 > 1 denote an integer. To augment a melody by ratio 𝑎 means we stretch the melody in time
by lengthening the duration of each note/rest by a factor of 𝑎. For example, the melody (0, 4, 𝑆, 7, 𝑅, . . .)
augmented by ratio 𝑎 = 2 would be (0, 𝑆, 4, 𝑆, 𝑆, 𝑆, 7, 𝑆, 𝑅, 𝑅, . . .). We say a melody (𝑠𝑘)∞𝑘=0 is self-similar
with augmentation ratio 𝑎 if

𝑠𝑎𝑘 = 𝑠𝑘 for all 𝑘 ≥ 0. (2)

We shall always assume our self-similar melodies are periodic modulo some positive integer 𝑛. For instance,
we can choose to interpret the augmented melody as a bass line playing at a slower tempo where each note is
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(16, 4, 4, 0, 4,12, 0, 7, 4, 0,12, 7, 0, 7, 7,16, 4, 4, 0, 4,12, 0, 7, 4, 0,12, 7, 0, 7, 7)

E5 E4 E4 C4 E4 C5 C4 G4 E4 C4 C5 G4 C4 G4 G4 E5 E4 E4 C4 E4 C5 C4 G4 E4 C4 C5 G4 C4 G4 G4

E4 E3 E3 C3 E3 C4 C3 G3 E3 C3 C4 G3 C3 G3 G3

( 4, S,-8, S,-8, S,-12,S,-8, S, 0, S,-12,S,-5, S,-8, S,-12,S, 0, S,-5, S,-12,S,-5, S,-5, S)

Figure 3: Self-Similar Melody and its Octave Lowered Augmentation with 𝑛 = 15, 𝑎 = 2

now one octave lower (subtract 12 from each pitch), and the original melody plays 𝑎 times for every one time
the bass line plays. The idea of playing the same melody at different speeds dates back to at least the middle
ages with prolation canons; for example, the Missa prolationum by Johannes Ockeghem has four voices sung
at different speeds (see Chapter 13 in [7]). We show a self-similar melody in Figure 3 where 𝑛 = 15 and
𝑎 = 2. Here the original melody consists of 15 quarter notes while the augmented melody (bass line) uses 15
half notes. Every time the bass line plays a new note, it matches a note being played in the original melody
just one octave lower. We created a self-similar waltz (audio file “2 mod 15 (waltz).wav” in supplement)
using this melody as the central theme played at three different speeds: half-time, normal, and double time.

Construction using Orbits of a Graph

The construction of periodic, self-similar melodies is actually straightforward. We just need to determine
which pairs of positions must have matching terms. Combining Equations 1 and 2 gives us the condition

𝑠𝑘 = 𝑠𝑚 whenever 𝑎𝑘 ≡ 𝑚 (mod 𝑛). (3)

For example, when 𝑛 = 15, 𝑎 = 2 as above, the positions 13 and 11 must having matching terms 𝑠13 = 𝑠11
since 2 · 13 = 26 = 15 + 11 ≡ 11 (mod 15). We can record and visualize which positions should match by
making a graph with vertices labeled 0, 1, . . ., 𝑛 − 1 and drawing an edge from vertex 𝑘 to vertex 𝑚 when
the congruence 𝑎𝑘 ≡ 𝑚 (mod 𝑛) in Equation 3 holds. The connected components of such a graph are called
orbits. Every position within a particular orbit must have matching terms in the melody. The graph for our
𝑛 = 15, 𝑎 = 2 example is shown on the left in Figure 4. The idea for this definition of graph comes from a
diagram by Tom Johnson for La Vie est si courte [6], which has 𝑛 = 20, 𝑎 = 3 seen on the right in Figure 4.

Figure 4: Graph with 𝑛 = 15 and 𝑎 = 2 (Left), Tom Johnson’s diagram with 𝑛 = 20, 𝑎 = 3 (Right)

Polyrhythmic Melodies with Strange Attraction

281



Figure 5: Self-similar melodies with 𝑎 = 8 ≡ 3/2 mod 𝑛 = 13 (top) and 𝑎 = 14 ≡ 3/2 mod 𝑛 = 25 (bottom)

Fractional Ratios and Polyrhythms

What happens when the augmentation ratio 𝑎 is large? It is often hard to audibly detect a melody that is
self-similar with a large ratio. For instance, if 𝑎 = 5, an augmented melody would be five times slower or
faster than the original and it would not be obvious that the augmented melody is in fact a stretched out
version of the original. Here we offer an alternative approach: to stretch a self-similar melody by some
fractional ratio which is smaller but congruent to 𝑎. Suppose there are integers 𝑏 > 𝑐 > 0 with gcd(𝑐, 𝑛) = 1
such that 𝑐𝑎 ≡ 𝑏 (mod 𝑛). Since 𝑐𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛), Equation 3 tells us that 𝑠𝑐𝑘 = 𝑠𝑏𝑘 . Thus, 𝑐 notes
in the bass line corresponds to 𝑏 notes in the main line, and we can regard a self-similar melody with ratio
𝑎 to as self-similar with ratio 𝑏/𝑐. We thus have a 𝑏 to 𝑐 polyrhythm which can be further emphasized by
percussive elements. For example, when 𝑎 = 8, 𝑛 = 13, we can stretch by a ratio of 3/2 since 2 · 8 = 16 ≡ 3
(mod 13). To visualize this in terms of sequences, we can stretch one copy of the melody by 2 (main line)
and another copy by 3 (bass line). For example, the melody (0, 3, 7, 7, 5, 3, 5, 5, 3, 5, 7, 7, 3, . . .) viewed as
periodic modulo 𝑛 = 13 is self-similar with ratio 𝑎 = 8. Augmenting this sequence by both 2 and 3 produces
the following two sequences which create a 3 to 2 polyrhythm where we have boxed positions where notes
would match:

( 0 ,S,3,S,7,S, 7 ,S,5,S,3,S, 5 ,S,5,S,3,S, 5 ,S,7,S,7,S, 3 ,S,0,S,3,S, 7 ,S,7,S,5,S, 3 ,S,0)
( 0 ,S,S,3,S,S, 7 ,S,S,7,S,S, 5 ,S,S,3,S,S, 5 ,S,S,5,S,S, 3 ,S,S,5,S,S, 7 ,S,S,7,S,S, 3 ,S,S)

We show the score for this example after dropping the bass line down one octave in Figure 5 (top) where
the bass line repeats twice while the main line repeats three times. Since polyrhythms are a common feature
modern jazz, we chose to create jazz inspired compositions (more detail on these in the final section) featuring
both 3 to 2 and 4 to 3 polyrhythmic melodies.

The idea of fractional augmentation ratios also presents another possibility; namely, we can stretch
individual notes by alternating ratios. In the case of a 3 to 2 polyrhythm as above, instead of having each note
stretched by a factor of 3/2 to create the bass line, we could alternate between notes which are stretched by 1
and 2. We illustrate this idea with 𝑛 = 25, 𝑎 = 14 ≡ 3/2 (mod 25) in Figure 5 (bottom) with a self-similar
piece for piano that feels like a prelude (audio file “3/2 mod 25 (prelude).wav” in supplement).

The bass line (left hand) alternates between half and quarter notes while the main line (right hand) plays
only quarter notes. In general, when stretching by a ratio of 𝑏/𝑐, we need a sequence of 𝑐 durations 𝑑1, 𝑑2,
. . . , 𝑑𝑐 with 𝑑1 + 𝑑2 + · · · + 𝑑𝑐 = 𝑏. The duration sequence itself could change during the piece and each 𝑑𝑖
need not be an integer.
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Figure 6: Detail from graph with ratio 𝑎 = 2 modulo 23 · 15 = 120

Self-Similar Melodies as Strange Attractors

In our examples thus far we have only considered self-similar melodies with gcd(𝑎, 𝑛) = 1. What happens
when gcd(𝑎, 𝑛) > 1? In those cases, we tend to have fewer orbits, so they produce seemingly less interesting
melodies since there are less choices for note values. For example, when 𝑛 = 12 and 𝑎 = 2, there are only
two orbits, so the melody would consist of at most two different note values. However, in Section 7 of
[1], Amiot points out that situations where gcd(𝑎, 𝑛) > 1 can actually be quite interesting. In particular,
Amiot showed that starting with any (possibly random) periodic mod 𝑛 melody (𝑠𝑘)∞𝑘=0 the iterative process
(𝑠𝑎𝑘)∞𝑘=0, (𝑠𝑎2𝑘)∞𝑘=0, (𝑠𝑎3𝑘)∞𝑘=0, . . . will eventually result in a melody which is self-similar with respect to
some power of 𝑎. In other words, there are integers 𝑝, 𝑞 > 0 such that (𝑠𝑎𝑝𝑘)∞𝑘=0 is self-similar with ratio
𝑎𝑞. In this way, self-similar melodies act as strange attractors since they have a fractal-like symmetry and
random sequences will eventually stabilize as self-similar through the above process.

One of our main goals from this project was to make compositions which showcased this strange
attraction by having a pseudo-random jumble of notes gradually transform into a self-similar, polyrhythmic
melody with respect to some 𝑎 ≡ 𝑏/𝑐 (mod 𝑛). However, there were two issues that needed to be addressed.
First, starting with a random sequence does not typically result in an interesting self-similar melody. Second,
the iterative process above can lose information at each step, so rather than hearing a gradual transformation,
one would hear more and more notes disappearing after each iteration. To overcome these two obstacles, we
developed the following approach. We start with an interesting melody (𝑠𝑘)∞𝑘=0 which is self-similar with
respect to 𝑎 ≡ 𝑏/𝑐 modulo 𝑛 and then augment by 𝑎ℓ for some number of “levels of evolution” ℓ. The
augmented sequence (𝑡𝑘)∞𝑘=0 is periodic mod 𝑎ℓ𝑛 where 𝑡𝑎ℓ 𝑘 = 𝑠𝑘 for all 𝑘 and 𝑡 𝑗 = 𝑆 otherwise. Each beat in
the augmented sequence we take to have a duration 1/𝑎ℓ beats of the original so that the augmented melody
sounds exactly like the original, but we have created many new places where notes can now live between
previously allowable positions. Now for each 𝑘 = 0, 1, . . . , 𝑛 − 1, consider a position of the form

𝑎ℓ−𝑑 (𝑘 + 𝑐0𝑛 + 𝑐1𝑎𝑛 + 𝑐2𝑎
2𝑛 + · · · + 𝑐𝑑−1𝑎

𝑑−1𝑛)
modulo 𝑎ℓ𝑛 where every coefficient 𝑐𝑖 is in {0, 1, . . . , 𝑎 − 1} and 𝑑 is some depth with 1 ≤ 𝑑 ≤ ℓ. When
we repeatedly multiply this quantity by 𝑎 and reduce modulo 𝑎ℓ𝑛, we get a sequence of positions which
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Figure 7: Pseudo-random melody attracting to self-similar melody with 𝑎 = 18 ≡ 4/3 modulo 𝑛 = 25

eventually returns to 𝑎ℓ 𝑘 after 𝑑 iterations. Such positions are precisely the indices that are in the orbit of
𝑎ℓ 𝑘 in the graph for modulus 𝑎ℓ𝑛 with ratio 𝑎. As an explicit example, consider 𝑎 = 2, 𝑛 = 15 with ℓ = 3
levels. The square orbit consisting of 11, 7, 14, 13 from the graph for 𝑎 = 2 mod 15 seen in Figure 4 becomes
the branched orbit mod 23 · 15 = 120 seen in Figure 6 with a corresponding central square of 23 · 11 = 88,
23 · 7 = 56, 23 · 14 = 112, 23 · 13 = 104.

The above algebraic description allows us to randomly choose positions in these orbits, and we fill such
positions with the note value 𝑠𝑘 . By selecting various depths 𝑑, some note values will be in the central part of
the orbit earlier than others, but all notes will be in their original positions after ℓ levels and the melody will
stabilize at that point since we assumed the original melody was self-similar. We created two jazz-inspired
pieces (audio files “4/3 mod 25 (jazz attractor).mp3” and “3/2 mod 19 (jazz attractor).wav” in supplement)
using ℓ = 5 levels of evolution, one with 𝑎 = 18 ≡ 4/3 modulo 𝑛 = 25 and the other with 𝑎 = 11 ≡ 3/2
modulo 𝑛 = 19. The 5 levels of evolution across 6 stages for 𝑎 = 18 ≡ 4/3 modulo 𝑛 = 25 can be visualized
as in Figure 7 where we have used Mathematica to plot pitch (vertical) versus time (horizontal).

Summary and Conclusions

By allowing non-integer augmentation ratio, we can construct self-similar melodies which create polyrhythms
when we layer a main line with a stretched out copy as a bass line. We constructed musical realizations of
such polyrhythmic melodies where pseudo-random notes go through several levels of transformations which
gradually reveal the self-similar structure. We can hear a fractal-like melody emerging from an attractor.
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