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Abstract

Based on N. G. de Bruijn’s work on Penrose tilings, we show a novel way to construct five linked Penrose rhombus
tilings. If we consider the classical inflation and deflation of Penrose tilings as a parent-child relation, these five
tilings can be seen as belonging to five different families being close friends.

The Aperiodic Tilings by Sir R. Penrose

In the 1970s, Sir R. Penrose discovered aperiodic tilings consisting of a small number of prototiles [3]. The
first tiling consists of four types of tiles named pentagon, star, boat, and diamond (this tiling is also called
P1 tiling). The second tiling (P2) has only two types of tiles called kite and dart. This article makes use of
the rhombus tiling known as P3 tiling, consisting of two types of rhombi. The thin rhombus has inner angles
𝜋
5 and 4𝜋

5 , the thick rhombus has inner angles 2𝜋
5 and 3𝜋

5 , and all edges in the tiling have the same length.
These three tilings come with inflation and deflation rules, which allow to create closely related coarser

and finer tilings. Aperiodicity is achieved by rules, how tiles may be attached to each other—these are often
represented by markings like single and double arrows on the edges of the tiles, but it is also possible to
create jigsaw puzzle pieces with tabs and blanks enforcing the attachment rules. The three classical Penrose
tilings and attachment rules for the rhombus tiling are shown in Figure 1.

Algebraic Theory

First, we recapitulate parts of the algebraic theory of Penrose tilings by N. G. de Bruijn [1]. Throughout this
article, we will write 𝜑 =

√
5−1
2 and Φ =

√
5+1
2 for the golden ratio. Following the notation of N. G. de Bruijn,

the complex fifth unit roots (solving 𝑧5 = 1, 𝑧 ∈ C) are written as

𝜁 =
𝜑

2 +
√

3+𝜑
2 𝑖, 𝜁2 = −Φ

2 +
√

2−𝜑

2 𝑖, 𝜁3 = −Φ
2 −

√
2−𝜑

2 𝑖, 𝜁4 =
𝜑

2 −
√

3+𝜑
2 𝑖, and 𝜁0 = 1.

Where it is convenient, we identify (𝑥, 𝑦) ∈ R2 with 𝑧 ∈ C in the usual way by 𝑧 = 𝑥 + 𝑖𝑦.

Figure 1: Penrose tilings — from left to right: P1 tiling, P2 tiling, P3 tiling, P3 tiling with arrows showing
attachment rules, P3 tiling as jigsaw puzzle.
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Figure 2: First four images: Points {𝑣} corresponding to the vertices {𝑧} of a P3 tiling—from left to right
highlighting points in the pentagon area 𝑉1, 𝑉2, 𝑉3, 𝑉4; rightmost image: two shift–equivalent

tilings 𝑇 and 𝑇 , the shift vector is shown as blue arrow.

To construct a Penrose rhombus tiling, we can use de Bruijn’s cut and project method: For a given
vector (𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛾4)⊤ ∈ R5, 𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 = 0, we intersect the 2𝐷 plane 𝑋 in 5𝐷 space given by
𝑥⊤(𝜇, 𝜈) = (𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛾4)+𝜇(2, 𝜑,−Φ,−Φ, 𝜑)+𝜈(0,

√︁
3 + 𝜑,

√︁
2 − 𝜑,−

√︁
2 − 𝜑,−

√︁
3 + 𝜑), 𝜇, 𝜈 ∈ R, with

the standard 5𝐷 unit cube grid. For each 5𝐷 cube containing a point 𝑥 belonging to the plane 𝑋 in its interiour,
we round up each component to the next integer value 𝑘 𝑗 = ⌈𝑥 𝑗⌉. The point 𝑥 = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4)⊤ ∈ Z5

is then projected orthogonally to 𝑋 . These projected points are the vertices of a Penrose rhombus tiling in
the plane 𝑋 , and each Penrose rhombus tiling can be computed in this way.

N. G. de Bruijn shows further, that a Penrose rhombus tiling is fully determined by the complex parameter
𝜉 =

∑4
𝑗=0 𝛾 𝑗𝜁

2 𝑗 . A point 𝑧 =
∑4

𝑗=0 𝑘 𝑗𝜁
𝑗 with integer representation (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4)⊤ ∈ Z5 is a vertex of

the rhombus tiling if and only if its index sum 𝑠 = 𝑘0 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 is not a multiple of 5 and the point
𝑣 =

∑4
𝑗=0 𝑘 𝑗𝜁

2 𝑗 − 𝜉 is contained in a pentagon 𝑉𝑟 , depending on the residue 𝑟 = (𝑠 mod 5). Here, 𝑉1 is the
regular pentagon with vertices 1, 𝜁 , 𝜁2, 𝜁3, and 𝜁4, 𝑉2 is the regular pentagon with vertices 1 + 𝜁 , 𝜁 + 𝜁2,
𝜁2 + 𝜁3, 𝜁3 + 𝜁4, and 𝜁4 + 1, 𝑉3 = −𝑉2, and 𝑉4 = −𝑉1. Figure 2 shows the points 𝑣 corresponding to the points
𝑧 of a rhombus tiling 𝑇 and the pentagon areas 𝑉𝑟 .

Up to now, the plane 𝑋 is embedded in 5𝐷 space, and this is not convenient for creating 2D images. By
the matrix

𝑀 = 1
2

©­­­­­­«

2 𝜑 −Φ −Φ 𝜑

0
√︁

3 + 𝜑
√︁

2 − 𝜑 −
√︁

2 − 𝜑 −
√︁

3 + 𝜑

2 2 2 2 2
2 −Φ 𝜑 𝜑 −Φ
0

√︁
2 − 𝜑 −

√︁
3 + 𝜑

√︁
3 + 𝜑 −

√︁
2 − 𝜑

ª®®®®®®¬
we get a linear transformation 𝑀𝑥, mapping each 5𝐷 grid point 𝑥 = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4)⊤ ∈ Z5 to a point
(𝑧1, 𝑧2, 𝑠, 𝑝1, 𝑝2)⊤ = 𝑀𝑥 ∈ R5. The first two entries define a point 𝑧 = (𝑧1, 𝑧2) in 2𝐷, the third entry gives
the index sum 𝑠, and the last two entries define another point 𝑝 = (𝑝1, 𝑝2) in 2𝐷.

Construction in a Nutshell
Although the cut and project method is described in 5𝐷 space, it is not necessary to operate in 5𝐷. To
construct a P3 tiling, we first choose the complex parameter 𝜉. For a section of the Z5 grid, we use the matrix
𝑀 to compute for 𝑥 ∈ Z5 correspoinding points 𝑧 and 𝑝 and the index sum 𝑠. If 𝑠 ∈ {1, 2, 3, 4}, we verify if
the 2𝐷 point 𝑣 = 𝑝 − 𝜉 is inside the corresponding pentagon area 𝑉𝑠, and if it is, the point 𝑧 is a vertex of the
P3 tiling, otherwise it is discarded. Pairs of points with distance 1 are connected by an edge.

Wieringa Roof
The first three entries (𝑧1, 𝑧2, 𝑠) give a representation by rhombi in 3𝐷 space—if we scale the third entry by
1
2 , all these rhombi with vertices

(
𝑧1, 𝑧2,

𝑠
2
)

in 3𝐷 space have the same shape with ratio Φ between their long
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Figure 3: From left to right: Small part of a P3 tiling, labeling of vertices by index sums, using labels to
compute height values 𝑠

2 , Wieringa roof over the tiling, larger part of the Wieringa roof.

and short diagonal, building a structure called “Wieringa roof” by N. G. de Bruijn [1]. The rhombus tiling
with vertex labels and the Wieringa roof are shown in Figure 3. N. G. de Bruijn states about the index vector
(𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4) for the projected 5𝐷 grid points: “Needless to say since 1 + 𝜁 + 𝜁2 + 𝜁3 + 𝜁4 = 0, the sum
𝑘0 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 can always be reduced modulo 5, but the fact that the sum is never a multiple of 5
is remarkable.” Several grid points 𝑥 = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4)⊤ may be projected to the same position (𝑧1, 𝑧2)
in 2𝐷, but for all grid points projected to the same 2𝐷 position, the index sum will have the same residue
modulo 5. It is not necessary to test all 5𝐷 grid points, testing grid points with index sum 𝑠 ∈ {1, 2, 3, 4} is
sufficient.

Shift–Equivalence
Two rhombus tilings 𝑇 for 𝜉 and 𝑇 for 𝜉 are shift–equivalent if and only if 𝜉 − 𝜉 ∈ 𝑃, here 𝑃 is the ideal of all
𝑛0 + 𝑛1𝜁 + 𝑛2𝜁

2 + 𝑛3𝜁
3 + 𝑛4𝜁

4, with (𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4)⊤ ∈ Z5 and 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 = 0. Shift–equivalent
tilings can be transformed into each other by a global translation [1].

For example, if we compute two tilings 𝑇 for 𝜉 and 𝑇 for 𝜉 = 𝜉 +5, since 5 = 4𝜁0 − 𝜁1 − 𝜁2 − 𝜁3 − 𝜁4 ∈ 𝑃,
we get two shift–equivalent tilings: translating the tiling 𝑇 by −5 in 𝜁0 direction (i.e., along the real axis),
we get the same tiling as by computing 𝑇 for 𝜉. Since each vertex 𝑧 of the tiling 𝑇 has a representation
𝑧 =

∑4
𝑗=0 𝑘̃ 𝑗𝜁

𝑗 , its corresponding vertex 𝑧 in 𝑇 can be computed as 𝑧 = ( 𝑘̃0 − 5)𝜁0 + ∑4
𝑗=1 𝑘̃ 𝑗𝜁

𝑗 , which is
a different representation for the same point 𝑧 =

∑4
𝑗=0 𝑘 𝑗𝜁

𝑗 computed for the tiling 𝑇 . For the index sum
𝑠 = 𝑘̃0 + 𝑘̃1 + 𝑘̃2 + 𝑘̃3 + 𝑘̃4 in the tiling 𝑇 , we have 𝑠 ∈ {1, 2, 3, 4}, in the representation computed from shifting
the tiling 𝑇 , we get an index sum in {−4,−3,−2,−1}, which still—as de Bruijn remarks—omits index sums
that are multiples of 5. The rightmost image in Figure 2 shows two tilings𝑇 and𝑇 with 𝜉−𝜉 = 𝜁 +𝜁2−𝜁3−𝜁4.
The resulting tilings are shift–equivalent; shifting 𝑇 by (𝜑

√︁
2 − 𝜑)𝑖 gives the tiling 𝑇 .

Relations between not Shift–Equivalent Tilings

In this section, we observe new relations between some not shift–equivalent tilings for parameters 𝜉 and
𝜉, where 𝜉 − 𝜉 =

∑4
𝑗=0 𝑛 𝑗𝜁

𝑗 , (𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4)⊤ ∈ N5, 𝜉 − 𝜉 ∉ 𝑃. For convenience, we will later choose
𝜉 = 𝜉 +𝑛, 𝑛 ∈ Z, but the same observations are true for a shift by any integer combination

∑4
𝑗=0 𝑛 𝑗𝜁

𝑗 . Using a
real integer difference between 𝜉 and 𝜉 is convenient, because in that case the necessary translation direction
and distance coincides with 𝜉 − 𝜉.

In the previously described construction, to compute a tiling from 𝜉, we only use grid points 𝑥 ∈ Z5

with index sums 𝑠 ∈ {1, 2, 3, 4}—let us call the resulting Tiling 𝑇0. But in fact, for the Z5 grid, the points
where 𝑠 is a multiple of 5 are not special. All grid points in the Z5 grid look exactly the same. We might as
well look for grid points 𝑥 with index sum 𝑠 ∈ {2, 3, 4, 5} and verify for the corresponding points 𝑣 if they
are contained in the pentagon area 𝑉(𝑠−1) to construct a new P3 tiling—let us call this Tiling 𝑇1. If we use
the 3𝐷 representation using vertices (𝑧1, 𝑧2,

𝑠
2 ), this new rhombus tiling 𝑇1 will share some vertices with the
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Figure 4: From left to right: Tilings 𝑇0 (blue) and 𝑇1 (sand) with heights 𝑠
2 and common points highlighted,

same tilings with 𝑇1 translated by − 1
2 in 𝑧–direction, Wieringa roofs for all five linked rhombus

tilings.

3𝐷 representation of the original rhombus tiling 𝑇0. Since 𝑇0 does not contain vertices with index sum 𝑠 = 5
and 𝑇1 does not contain vertices with index sum 𝑠 = 1, they only share points with index sums 𝑠 ∈ {2, 3, 4}.
The tilings 𝑇0 and 𝑇1 share even some edges and complete rhombi. If we translate the 3𝐷 representation of
𝑇1 down to the usual range for Wieringa roofs

[ 1
2 ,

4
2
]
, using vertices

(
𝑧1, 𝑧2,

𝑠−1
2

)
, the tilings 𝑇0 and 𝑇1 still

have vertices with shared 2𝐷 position (𝑧1, 𝑧2), but now the height values are always different for the two
tilings. So in the 3𝐷 representation, the two tilings do not have shared vertex positions, and even edges of
the two tilings do not intersect in 3𝐷. There are however edges intersecting rhombi of the other tiling, and
intersections of rhombi of the two tilings. The centre parts of the rhombi can be cut out, such that the two
tilings with missing interiour parts of all rhombi do not intersect in 3𝐷. Figure 4 shows tilings 𝑇0 and 𝑇1
with both variants of height values. In the same way, we can now create more tilings 𝑇𝑛. First we look for
grid points with index sums 𝑠 ∈ {1 + 𝑛, 2 + 𝑛, 3 + 𝑛, 4 + 𝑛}, verify for each point 𝑥 if its point 𝑣 = 𝑝 − 𝜉 is
contained in the pentagon area 𝑉𝑠−𝑛, and in that case compute the corresponding point (𝑧1, 𝑧2,

𝑠−𝑛
2 ) for the

tiling 𝑇𝑛. The tiling 𝑇5 is identical to 𝑇0, and in general 𝑇𝑛 = 𝑇𝑛+5. So this way, we get five different tilings,
each of them omitting one residue modulo 5 in the index sums of its vertices.

If we compute a tiling 𝑇𝑛 for 𝜉 = 𝜉 + 𝑛 and then translate the tiling by −𝑛 along the real axis, this results
in the same tiling as looking for points 𝑣 =

∑4
𝑗=0 𝑘 𝑗𝜁

2 𝑗 − 𝜉 with index sum 𝑠 = 𝑟 − 𝑛 in the pentagon area 𝑉𝑟
and computing the corresponding tiling points 𝑧 =

∑4
𝑗=0 𝑘 𝑗𝜁

𝑗 . Since 𝑛 ∉ 𝑃 unless 𝑛 is a multiple of 5, the
five tilings 𝑇0, 𝑇1, 𝑇2, 𝑇3, and 𝑇4 are not shift–equivalent to each other, but they are very closely related—let
us call them friends. Starting with the tiling for one of the 𝜉 + 𝑛 values and computing its friend tilings results
in exactly the same set of five friend tilings—they are just all five translated by 𝑛. So within these five friend
tilings, every one can be used as the start to generate the same set of five friend tilings.

Friendship between Families

Each P3 tiling is part of a family of P3 tilings by the substitution rule, which is shown in Figure 5: For the
rhombus tiling, we get a finer rhombus tiling by splitting each thin rhombus into two halves of small thick
rhombi and two halves of small thin rhombi, and splitting each thick rhombus into two halves of small thin
rhombi, two halves of small thick rhombi, and one complete small thick rhombus. The new half thick and thin
small rhombi always have a fitting other half small rhombus in the neighbouring coarse rhombus, because
all coarse edges with single arrows look the same and all coarse edges with double arrows look the same in
the substitution rule. In reverse, it is also possible to get back to a coarser tiling from a fine tiling: whenever
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Figure 5: The refinement rules for the P3 rhombi and a section of a parent tiling (light blue) and its child
tiling (black), both with arrows indicating refinement rules on their edges.

two fine thin rhombi share an edge, this is a double arrowed edge, and it is the short diagonal of a coarse thin
rhombus, and every single arrow between two thick rhombi in the fine tiling is part of the long diagonal of a
coarse thick rhombus.

The ratio of fine to coarse edge length is 𝜑. By de Bruijn’s method, it is also possible to compute finer
and coarser tilings directly: For a given tiling 𝑇 computed from the complex parameter 𝜉, we can compute the
next finer tiling (its “child” by the substitution) by computing a tiling from the complex parameter 𝜉𝑐 = −𝜑𝜉
and scaling the resulting tiling by −𝜑. The coarser “parent” tiling which has 𝑇 as its child can be created by
computing a tiling for the complex parameter 𝜉𝑝 = −Φ𝜉 and scaling it by −Φ. For a given tiling 𝑇0, we can
now consider its parent tiling 𝑃0 and child tiling 𝐶0 and compute their friend tilings 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝐶1, 𝐶2,
𝐶3, and 𝐶4 in the same way as for 𝑇0, by using the same 𝜉𝑝 and 𝜉𝑐, verifying the 𝑣 points with the pentagon
area 𝑉𝑟 for index sum 𝑠 = 𝑟 − 𝑛 and using the same scaling by −𝜑 and −Φ for the resulting friend tilings of
the child and parent tiling. The friend tilings of child tiling 𝐶0 turn out to be the child tilings of the friend
tilings of 𝑇0, so friendship is kept within families: The tiling 𝐶1 is the child of friend tiling 𝑇2, 𝐶2 is the
child of friend tiling 𝑇4, 𝐶3 is the child of friend tiling 𝑇1 and 𝐶4 is the child of friend tiling 𝑇3. The same
permutation links the friends of 𝑇0 to the friends of its parent tiling 𝑃0: The tiling 𝑃2 is the parent of friend
tiling 𝑇1, 𝑃4 is the parent of friend tiling 𝑇2, 𝑃1 is the parent of friend tiling 𝑇3 and 𝑃3 is the parent of friend
tiling 𝑇4. This permutation occurs because the friend tilings on the parent level and on the child level relative
to 𝑇 are scaled by −Φ and 𝜑, and the friends can be computed by integer shifts in 𝜉—but since 𝜁 + 𝜁4 = 𝜑

and 𝜁2 + 𝜁3 = −Φ, this stays still in the set of friends and only permutes the ordering of friends in different
generations.

Figure 6: The starfish / ivy leaf / hexagon tiling. From left to right: P3 tiling with labeled vertices, rhombus
tiling with labels 1 and 4 removed, starfish / ivy leaf / hexagon tiling in relation to the P1 tiling,

used representation of the starfish / ivy leaf / hexagon tiling with circular cut lines.

Linked Penrose Tilings

267



Figure 7: Five friend starfish / ivy leaf / hexagon tilings, which will be interwoven with each other.

Artistic Realisation

It is hard to see the five tilings in the complete rhombus tilings with cut–out rhombus centres. Therefore, for
a realisation of five linked Penrose tilings made from paper, we use a reduced tiling, named starfish / ivy leaf /
hexagon tiling by E. A. Lord [2]. We get this tiling by removing all vertices with index sums 1 and 4 from
the rhombus tiling, keeping only edges between vertices with index sums 2 and 3. This way, groups of five
thick rhombi (related to a P1 star) are joined into a starfish, three thick rhombi join with one thin rhombus
(related to a P1 boat) are joined into an ivy leaf, and two neighbouring thin rhombi (related to a P1 diamond)
are joined with one thick rhombus into a hexagon. The edges of the starfish / ivy leaf / hexagon tiling can also
be obtained by connecting the centres of neighbouring pentagons in the corresponding P1 tiling. Figure 6
shows the starfish / ivy leaf / hexagon tiling in relation to the P1 and P3 tiling.

We cut holes into each starfish, ivy leaf, and hexagon, to let the edges of the related other four tilings
pass through the interiours of the tiles. For a visually pleasing appearance, these holes are cut along circular
arcs. Figure 7 shows sections of five related tilings. The information about which tiling should be on top and
bottom at the vertices is induced from the Wieringa roof 𝑠 values—since all vertices with values 1 and 4 were
removed to obtain the starfish / ivy leaf / hexagon tiling, there are only values 2 and 3 left, so not more than
two tilings have a vertex at the same 2𝐷 position (𝑧1, 𝑧2). For each pair of tilings with neighbouring shifts 𝑛
and 𝑛+1, where they have common vertices, the heights are always different, and in each pair always the same
tiling has the top vertex. Figure 8 shows in the top row the five neigbouring pairs of starfish / ivy leaf / hexagon

Figure 8: Top row: The five neighbouring pairs of starfish / ivy leaf / hexagon tilings—for each pair, at
common vertices always the same tiling is on top. Bottom row: The five not neighbouring pairs of

starfish / ivy leaf / hexagon tilings—there are no common vertices.
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Figure 9: All cut lines for all five friend tilings.

tilings. Some of the vertices of the tiling on top, which are not contained in the neighbouring tiling, are
below edges of the bottom tiling and vice versa, so the edge graphs of neighbouring tilings are linked into
each other. For each of the five pairs of starfish / ivy leaf / hexagon tilings with not neighbouring shifts, there
are no common vertices; these five pairs are shown in the bottom row in Figure 8. Also here, the edge graphs
of all pairs of tilings are linked into each other. At all edge crossings for all pairs of tilings, the information
about which edge is on top is induced by linear interpolation of vertex heights along the edges.

These five sections were realised from five sheets of paper in five different colours and then linked into
each other by cutting and gluing—all cut lines for holes in starfish, ivy leaf, and hexagon tiles for all five
friend tilings are shown in Figure 9, the final result is part of the Bridges 2025 Exhibition of Mathematical
Art, Craft, and Design and is shown in Figure 10.
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Figure 10: The five linked starfish / ivy leaf / hexagon tilings.

Summary and Conclusions

By a small modification in de Bruijn’s cut and project method, every Penrose tiling is part of a set of five
friend tilings. This shows a novel connection between tilings that is richer than simple shift–equivalence.
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