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Abstract
This paper presents a new method for composing aleatoric (chance-based) music by performing multiple random
walks through mathematical graphs constructed from existing musical scores. I introduce a mathematical definition
of this technique and then describe a physical procedure for performing this process with yarn and paper, which I
used to create a 19-movement composition for piano as well as multiple additional artistic outputs.

Figure 1: An installation created by physically performing the random walk compositional process.

Introduction

Aleatoric music is a type of music in which some compositional decisions are determined by chance
operations [3]. Examples include Mozart’s Musikalisches Würfelspiel (1792), which used dice throws to
sequence existing measures of music [4], and John Cage’s Music of Changes (1951), which used the Chinese
divinatory text I Ching to sequence elements from prepared charts of sounds, durations, and dynamics [3].

In the 1960s and 70s, Iannis Xenakis pioneered stochastic music, a subfield of aleatoric music, which
uses stochastic processes to generate music. In his 1971 work for solo violin, Mikka, Xenakis used a random
walk on note pitches to create continuous glissandi, with the violinist sliding continuously between discrete
pitches generated by the random walk. Xenakis went on to compose a number of other works using random
walks on pitch and duration to generate both linear (single-track) and textural (multi-track) sequences [2].

In this paper, I present a new method for aleatoric composition by performing multiple random walks
through mathematical graphs constructed from existing musical scores. I first give a mathematical definition
of this composition process, detailing 1) its source material; 2) its devised structure, which organizes the
source material; and 3) its sequencing procedure, which selects and orders elements of the source material
from within the devised structure. I then describe my physical implementation of this process using yarn and
paper to compose a 19-movement work for piano, eponymously titled RANDOM WALK. Finally, I describe
the many additional artistic outputs of this physical process, including the art shown in Figures 1, 5, and 6.
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Mathematical Definition of Random Walk Composition

Source Material
We begin by selecting existing musical pieces for source material. These pieces can be of any genre, for any
instrument, as long as their scores contain discreme measures.

Let 𝑁 be the number of source pieces in the set P = {𝑃1, 𝑃2, ..., 𝑃𝑁 } of all source pieces. For each
piece 𝑃𝑖 , let 𝑥𝑖 be the number of measures in the sequence 𝑀𝑖 = 𝑚1

𝑖
, 𝑚2

𝑖
, ..., 𝑚

𝑥𝑖
𝑖

of all ordered measures in
that piece. Then, for each piece 𝑃𝑖 , pick a number 𝑦𝑖 with 0 < 𝑦𝑖 ≤ 𝑥𝑖 , and select 𝑦𝑖 distinct measures from
𝑀𝑖 . Without loss of generality, we may reassign indices to write this set of chosen measures as

𝐶𝑖 = {𝑚1
𝑖 , 𝑚

2
𝑖 , ..., 𝑚

𝑦𝑖
𝑖
|𝑚 𝑗

𝑖
∈ 𝑀𝑖} (1)

Our source material then consists of the set P of 𝑁 source pieces and the 𝑁 sets𝐶𝑖 of 𝑦𝑖 chosen measures.
As an example, let’s consider an implementation using 𝑁 = 3 pieces, all of length 𝑥𝑖 > 3 measures, and
choose 𝑦1 = 𝑦2 = 𝑦3 = 3 measures from each piece. Then our source material is defined as P = {𝑃1, 𝑃2, 𝑃3}
and the 3 sets 𝐶1 = {𝑚1

1, 𝑚
2
1, 𝑚

3
1}, 𝐶2 = {𝑚1

2, 𝑚
2
2, 𝑚

3
2}, and 𝐶3 = {𝑚1

3, 𝑚
2
3, 𝑚

3
3}, as in the top of Figure 2.

Devised Structure
Next, we construct 𝑁 + 1 graphs to organize our source material. Recall that a simple graph has unweighted,
undirected edges with no loops or duplicate edges, and a connected graph includes a path between all possible
pairs of vertices. Recall also that the valency of a vertex is the number of edges connected to that vertex, and
wo vertices are neighbors if they are connected by an edge. Finally, recall that a graph is regular if all its
vertices have the same valency.

First, construct Φ(P, 𝐸) to be a simple, connected, and regular graph, with pieces 𝑃𝑖 ∈ P as vertices, a
set of edges 𝐸 , and each vertex 𝑃𝑖 with valency 𝜌. Note that the valency 𝜌 must satisfy that the product 𝑁𝜌

is even, to ensure simple connectivity. Then, let 𝑁Φ(𝑃𝑖) denote the set of 𝜌 neighbors of a vertex 𝑃𝑖 ∈ P.
Next, for all 1 ≤ 𝑖 ≤ 𝑁 , construct Ω𝑖 (𝐶𝑖 , 𝜖𝑖) to be a simple, connected, and regular graph, with chosen

measures 𝑚 𝑗

𝑖
∈ 𝐶𝑖 as vertices, a set of edges 𝜖𝑖 , and each vertex 𝑚

𝑗

𝑖
with valency 𝜂𝑖 . Similarly, this valency

number 𝜂𝑖 must satisfy that the product 𝑦𝑖𝜖𝑖 is even, to ensure simple connectivity. Then, let 𝑁Ω𝑖
(𝑚 𝑗

𝑖
) denote

the set of 𝜂𝑖 neighbors of a vertex 𝑚
𝑗

𝑖
∈ 𝐶𝑖 .

Our source material is now organized into one piece-level graph Φ and 𝑁 measure-level graphs Ω𝑖 . For
our example, the middle panel of Figure 2 shows the 4 graphs Φ, Ω1, Ω2, and Ω3 constructed with chosen
valencies 𝜌 = 𝜂1 = 𝜂2 = 𝜂3 = 2.

Sequencing Procedure
Finally, we define our sequencing procedure, which consolidates the results of 𝑁 + 1 random walks into a
single sequence of measures. Recall that a random walk on a graph can be thought of as “visiting” vertices
one by one, with the next visited vertex randomly chosen from the neighbors of the previous vertex [1].

A random walk on a graph is typically denoted as a Markov Chain, given by a sequence of dependent
random variables 𝑋1, 𝑋2, ..., 𝑋𝑡 with some probability distribution function describing the dependence of each
visited vertex 𝑋𝑇 on the previous visited vertex 𝑋𝑇−1 [1].This formulation can be thought of as capturing all
possible random walks, as it does not specify any particular vertex for each 𝑋𝑇 . In this paper, I will instead
use an “after completion” perspective to notate one particular random walk on a graph as the fixed sequence
of specific visited vertices in one completed walk.

With this in mind, let R be a 𝑘-step random walk completed on the piece-level graph Φ, given by the
sequence of visited vertices

R(Φ) = 𝜓1, 𝜓2, ..., 𝜓𝑘 (2)

Liu

208



Without loss of generality, we define 𝜓1 = 𝑃1 to be the starting vertex of R(Φ), and each subsequent 𝜓 𝑗 is
chosen randomly from the set 𝑁Φ(𝜓 𝑗−1) of the previous vertex’s neighbors for all 1 < 𝑗 ≤ 𝑘 . The value of 𝑘
may be arbitrarily chosen and typically represents the total number of measures in the composition.

Next, for each measure-level graph Ω𝑖 , let B𝑖 be an 𝑞-step random walk completed on Ω𝑖 given by

B𝑖 (Ω𝑖) = 𝛿1
𝑖 , 𝛿

2
𝑖 , ..., 𝛿

𝑞

𝑖
(3)

Similarly, we define 𝛿1
𝑖
= 𝑚1

𝑖
to be the starting vertex of B𝑖 (Ω𝑖) without loss of generality, and for all

1 < 𝑗 ≤ 𝑞, each subsequent 𝛿 𝑗

𝑖
is chosen randomly from the set 𝑁Ω𝑖

(𝛿 𝑗−1
𝑖

) of the previous vertex’s neighbors.
Here, the value of 𝑞 is unimportant, which is discussed later. For now we can simply set 𝑞 = 𝑘 .

Finally, we consolidate these 𝑁 + 1 random walks into a final sequence of measures S = 𝑠1, 𝑠2, ..., 𝑠𝑘 .
We define the 𝑗 th sequenced measure as

𝑠 𝑗 = 𝛿𝜏𝑖 = 𝑚𝜈
𝑖 (4)

Here 𝑖 is defined by 𝜓 𝑗 = 𝑃𝑖 , then 𝜏 is defined as the number of times the vertex 𝑃𝑖 has been visited at step
𝜓 𝑗 in random walk R(Φ), and finally 𝛿𝜏

𝑖
= 𝑚𝜈

𝑖
is the measure 𝑚𝜈

𝑖
chosen at step 𝜏 of random walk B𝑖 (Ω𝑖).

Figure 2: An example composition: (top) source material; (middle) the piece-level graph Φ and the
measure-level graphs Ω1, Ω2, and Ω3, with random walks R, 𝐵1, 𝐵2, and 𝐵3 traced in red and

written out explicitly; (bottom) the final sequence of measures S.
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The middle panel of Figure 2 shows the random walks R(Φ), 𝐵1(Ω1), 𝐵2(Ω2), and 𝐵3(Ω3) for our
example, with walk lengths set to 𝑘 = 𝑞 = 4. Each walk is marked in red on their corresponding graph,
starting from the starred vertex, and their visited vertices are explicitly written to the right of each graph.
The bottom of Figure 2 also shows the final sequence S formed by consolidating these random walks using
equation 4, as explained below.

For 𝑗 = 1, we have 𝜓1 = 𝑃1, so 𝑖 = 1. Now 𝑃1 has been visited once, so 𝜏 = 1. Then 𝑠1 = 𝑑1
1 = 𝑚1

1.
For 𝑗 = 2, we have 𝜓2 = 𝑃2, so 𝑖 = 2. Now 𝑃2 has been visited once, so 𝜏 = 1. Then 𝑠2 = 𝑑1

2 = 𝑚1
2.

For 𝑗 = 3, we have 𝜓3 = 𝑃1, so 𝑖 = 1. Now 𝑃1 has been visited twice, so 𝜏 = 2. Then 𝑠3 = 𝑑2
1 = 𝑚3

1.
For 𝑗 = 4, we have 𝜓4 = 𝑃3, so 𝑖 = 3. Now 𝑃3 has been visited once, so 𝜏 = 3. Then 𝑠4 = 𝑑1

3 = 𝑚1
3.

Thus the final composition in this example is the sequence of measures S = 𝑚1
1, 𝑚1

2, 𝑚3
1, 𝑚1

3.

Stepwise Sequencing
This sequencing procedure can also be explained as a two-step loop, where the random walks are created
concurrent to—rather than before—the final sequence S. For each measure 𝑠 𝑗 , the piece-level random walk
R(Φ) is first stepped one vertex forward to select a piece 𝜓 𝑗 = 𝑃𝑖 . Then, this piece’s measure-level random
walk B𝑖 (Ω𝑖) is stepped one vertex forward to find the measure 𝑠 𝑗 = 𝛿𝜏

𝑖
= 𝑚𝜈

𝑖
. These two steps repeat to find

all measures 𝑠 𝑗 . In this formulation, we only need to keep track of each random walk’s current vertex, and
we stop looping these two steps once the final sequence reaches our desired length 𝑘 .

This stepwise formulation also clarifies why the value of 𝑞, the length of each measure-level random
walk, is unimportant: as long as 𝑞 is “big enough,” it is unlikely that any piece 𝑃𝑖 will be revisited more
than 𝑞 times during random walk R(Φ). In any case, 𝑞 can be increased to extend the measure-level walks
if necessary by simply visiting more vertices.

Stopping Criteria & Flexibility
Note that in the stepwise formulation, the number of steps 𝑘 in the piece-level random walk R(Φ) acts as
a “stopping criteria” that tells us to stop random-walking once the composition has reached length 𝑘 . We
could also set different stopping criteria: for instance, stop when every piece 𝑃𝑖 has been visited at least
once in random walk R(Φ); or, stop when every measure 𝑚

𝑗

𝑖
has been sequenced at least once in the final

composition S. These potential changes illustrate the intended flexibility of this compositional method. Here
I’ve written a strict definition of random walk composition, but any of these rules may be modified at will, as
demonstrated in the following section.

Physical Implementation of Random Walk Composition

This section describes my physical implementation of the previous mathematical definition to compose a
19-movement work for piano, eponymously titled RANDOM WALK.

Source Material
I chose 𝑁 = 19 existing pieces from the Western-classical piano repertoire, selecting pieces that I played as a
child. A full list of these pieces can be found at [5]. I then chose between 6 and 13 measures from each piece.

Devised Structure
To construct the piece-level graph Φ(P, 𝐸) shown in Figure 3a, I randomly arranged the titles of each piece
𝑃𝑖 ∈ P on a sheet of paper using brad fasteners and glue. I then created the edges 𝐸 by running a white
string between brads until I reached my chosen valency number 𝜌 = 4 for all vertices. Using one continuous
length of string ensured that the graph was connected. I also avoided creating duplicate edges or self-loops,
and the white string did not indicate direction or weight, ensuring that the graph was simple.
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(a) (b)

Figure 3: Constructed graphs: a) the piece-level graph Φ with piece names as vertices and strings as edges,
and b) the measure-level graph Ω1 for piece 𝑃1, with measures as vertices and strings as edges.

The 19 measure-level graphs Ω𝑖 were similarly constructed, with Ω1 shown in Figure 3b. For each graph
Ω𝑖 (𝐶𝑖 , 𝜖𝑖), I used glue and brad fasteners to arrange each chosen measure 𝑚

𝑗

𝑖
∈ 𝐶𝑖 on a sheet of paper, and

then created edges 𝜖𝑖 with one continuous white string until I reached the valency number 𝜂𝑖 for all vertices.
I chose valencies of either 𝜂𝑖 = 3 or 𝜂𝑖 = 4 for each measure-level graph.

Modifications to Sequencing Procedure
I first modified my stopping criteria. Instead of choosing an overall number of measures 𝑘 , I decided to
compose 19 movements with 19 measures each, requiring that the first measure of each movement should
come from the same piece as the last measure of the previous movement. To capture this modification
mathematically, recall that the completed piece-level random walk R is given by

R(Φ) = 𝜓1, 𝜓2, ..., 𝜓𝑘 (5)

with 𝜓1 = 𝑃1. We set 𝑘 = 361 and require that 𝜓 𝑗 = 𝜓 𝑗−1 for all 𝑗 in 1 < 𝑗 < 𝑘 where ( 𝑗 mod 19) = 1. The
remaining 𝜓𝑢 are then chosen randomly from the set 𝑁Φ(𝜓𝑢−1) of the previous vertex’s neighbors, as usual.

I also added physical randomization to shuffle groups of notes within each measure. I printed out each
chosen measure 𝑚

𝑗

𝑖
, cut it in half horizontally to separate right-hand and left-hand notes, and cut each half

into note-groups based on my musical intuition, as in Figure 4a. I then placed each chopped-up measure into
a labeled paper envelope. For each measure in the sequence S, I shook out the measure’s chopped-up pieces
to get a physically randomized version of the measure to use in the final composition, as shown in Figure 4b.

The mathematical representation of this “chop-up randomization” process is left as an exercise to the
reader (hint: use partitions). For brevity, I will simply add an additional step to the sequencing procedure:
after consolidating the final sequence S = 𝑠1, 𝑠2, ..., 𝑠𝑘 of sequenced measures, create a transformed sequence
S∗ = 𝑠∗1, 𝑠

∗
2, ..., 𝑠

∗
𝑘

by applying chop-up randomization to every sequenced measure 𝑠 𝑗 .

Implementation of Sequencing Procedure
Instead of performing 20 separate random walks and then consolidating their results, I performed a physical
version of the aforementioned step-wise process in which the piece-level random walk R(Φ) is stepped
forward to choose a source piece 𝜓 𝑗 = 𝑃𝑖 , and then that piece’s measure-level random-walk 𝐵𝑖 (Ω𝑖) is stepped
forward to choose the next measure 𝑠 𝑗 = 𝛿𝜏

𝑖
= 𝑚𝜈

𝑖
in the composed sequence S. A timelapse video of this

process can be found at [5], which may be useful in visualizing the description below.
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(a) (b)

Figure 4: Chop-up randomization: a) the measure 𝑠1 split first in half (red) to separate right- and left-hand
notes, and then into groups (blue) based on my musical intuition; b) the transformed measure 𝑠∗1

with blocks arranged after being physically shaken out.

I first affixed each measure-level graph Ω𝑖 to a wall and chose a starting vertex 𝛿1
𝑖
= 𝑚1

𝑖
for each

measure-level random walk 𝐵𝑖 (Ω𝑖). I marked these starting measures with a length of black string. I then
chose a vertex 𝜓1 = 𝑃1 to start my piece-level random walk R(Φ). I picked a color of yarn to represent the
first movement and tied a length of this yarn to the vertex 𝑃1 on the piece-level graph Φ. I then tied a separate,
second length of yarn to the starting vertex 𝛿1

1 = 𝑚1
1 of the random walk 𝐵1(Ω1). Finally, I shook out the

envelope for measure 𝑚1
1 to physically randomize its notes. I took a picture of this randomized arrangement,

shown in Figure 4b, thus creating the first measure 𝑠∗1 in the transformed sequence S∗.
For the remaining measures of the first movement, I repeated four steps:

1. step forward in the piece-level random walkR(Φ) by stringing the first length of yarn to a new piece-level
vertex 𝜓 𝑗 = 𝑃𝑖 , choosing 𝑃𝑖 randomly from the set 𝑁Φ(𝜓 𝑗−1) of the neighbors of 𝜓 𝑗−1;

2. step forward in the measure-level random walk 𝐵𝑖 (Ω𝑖) by stringing the black string to a new measure-
level vertex 𝛿𝜏

𝑖
= 𝑚𝜈

𝑖
, choosing 𝑚𝜈

𝑖
randomly from the set 𝑁Ω𝑖

(𝛿𝜏−1
𝑖

) of the neighbors of 𝛿𝜏−1
𝑖

;
3. also string the second length of yarn to that measure-level vertex 𝑚𝜈

𝑖
, thus marking 𝑠 𝑗 = 𝛿𝜏

𝑖
= 𝑚𝜈

𝑖
to

keep track of the consolidated sequence of measures S; and finally
4. shake out the envelope for the measure 𝑚𝜈

𝑖
and take a picture of this transformed measure 𝑠∗

𝑗
.

At the end of each movement, I tied off both lengths of yarn to their last vertices, 𝑃𝑒 and 𝑚𝑑
𝑒 . To start

each new movement, I performed slightly modified versions of steps 1 and 3, with steps 2 and 4 the same:

1a. Pick a new color of yarn for this movement and tie a first length of new-colored yarn to the same
piece-level vertex 𝑃𝑒 from the end of the previous movement;

3a. tie a second length of new-colored yarn to the selected measure-level vertex 𝑚𝜈
𝑖
.

I then repeated the original steps 1-4 to create the remaining measures of each movement.

Artistic Outputs

This physical implementation of random walk composition creates several artistic byproducts alongside the
final musical composition. First, we have the wall installation shown in Figure 1, where the consolidated
sequence of measures S is represented in the paths of colored yarn, and the measure-level random walks
𝐵𝑖 (Ω𝑖) are represented in the paths of black string on each measure-level graph Ω𝑖 .
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Second, we have the piece-level graph Φ with its random walk R(Φ) visualized in layers of colored
yarn, one for each movement. The yarn I used was too thick to keep all 19 layers on at once, so I organized
the movements into 4 cycles of 4 movements each, plus 1 cycle of 3 movements at the end, and removed all
the yarn before the start of a new cycle. The piece-level graph is shown in Figure 5, after Cycle I.

Figure 5: The piece-level graph Φ after Cycle I, with 4 layers of yarn showing the random walk R(Φ).

Third, we have the pictures of each transformed measure 𝑠∗
𝑖
. I digitally stitched all 361 of these images

into one composite image, shown in Figure 6, with each movement represented as one row.
Fourth, we have the physical performance of undertaking this procedure, which I videotaped in its

entirety of about 15 hours. An edited timelapse of the composition process can be found at [5].
Finally, we have the composition itself, consisting of 361 transformed measures 𝑠∗

𝑖
. The fully transcribed

human-readable score and a partial recording of the piece as performed by myself can be found at [5].

Conclusion

In this paper, I presented a mathematical definition and physical implementation of a new method for
aleatoric composition using random walks through graphs constructed from existing musical scores. This
method creates multiple artistic outputs alongside the musical composition, and it presents many exciting
avenues for more potential modifications and extensions. For instance, instead of physically randomizing the
notes within each measure, note-level graphs may be constructed for each measure, on which a third level of
random walks may be performed. Graphs may also be constructed and walked to sequence dynamics, time
signatures, note durations, or any other elements of a musical composition. Finally, the stepwise formulation
of the sequencing procedure may easily be converted into a computational program, which would enable
exploration of high volumes of large-scale compositions using the random walk technique.
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Figure 6: All 361 transformed measures 𝑠∗
𝑖

laid out in a grid, with each movement represented as one row.
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