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Abstract 

Today's fashion design is based on a separation of concerns such that the geometry of the fabric motif and the 
geometry of the pattern cut are unrelated. We challenge this approach by developing mathematical tools to morph 
the motif. The core innovation lies in the mathematical framework, based on holomorphic mappings and harmonic 
conjugate functions, to map motifs onto arbitrarily shaped panels. This approach, implemented via custom 
software, allows for seamless motif continuation across complex garment shapes, avoiding cutting through 
repeating designs. We demonstrate the technique's application through several garment examples, showcasing its 
potential for creative pattern design and efficient manufacturing.  

 
Introduction 

It is an unwritten rule of fashion that it is permissible to cut through the motif whenever the overall design 
of the item requires so. Viewed from a historical  perspective, when fabrics were constructed on traditional 
looms and the motifs had to emerge from the weave as well, this rule is well-justified. However, nowadays 
we have printers and computerized Jacquard looms and it is time to reconsider the unwritten rule and 
explore alternatives. We may face new challenges, but we may also discover new aesthetic possibilities.  

                   
(a)                                               (b)                                                  (c) 

Figure 1: Morphing: (a) puppytooth motif, (b) mapped on a cone, (c) using a pattern.  

We use the term “pattern” for an assembly of sewing lines, necklines, hemlines, darts etc. The pattern is 
what concerns the seamster. We use the term “wallpaper” in the mathematical sense, viz. an assembly of 
images that are repeated by two distinct translations, possibly equipped with additional symmetries [4]. The 
“motif” is the element that is repeated, for example a bunch of flowers, a brand logo (such as the two letters 
F of Fendi), bird or a fish (in case of an Escher-style design), or a pied-de-poule tile (houndstooth). The 
wallpaper and the motif are what concern the graphic designer and the printer. A typical fashion item, such 
as a garment or a bag is composed of a number of “panels”, each of which is described by a pattern. 

As our first example, consider a cone, which is the simplest pattern of a skirt imaginable. If we cut the 
layout of a cone from a wallpaper, we must cut through the motif. We can do better by mapping the grid of 
the wallpaper to the layout pattern of the cone, as illustrated in Figure 1.  
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How do we obtain such a pattern? In a Cartesian coordinate system where we know the color of the motif 
for each pair (𝑥𝑥,𝑦𝑦), then we need a mapping (𝑥𝑥,𝑦𝑦) ↦ (𝑢𝑢, 𝑣𝑣). The puppytooth motif is naturally described 
in 𝑥𝑥,𝑦𝑦 coordinates.  In this case, the unit cell of the motif is square and without loss of generality we choose 
the width and height of the unit cell to be 1. To begin, we introduce polar coordinates 𝑟𝑟 and 𝜑𝜑 such that 
𝑢𝑢 = 𝑟𝑟 cos 𝜑𝜑  and 𝑣𝑣 = 𝑟𝑟  sin 𝜑𝜑.  For Figure 1, we let 𝑟𝑟 increase linearly with 𝑥𝑥 and we choose 𝜑𝜑 to be 
proportional to 𝑦𝑦, say 𝜑𝜑 = (2𝜋𝜋/𝑁𝑁)𝑦𝑦 which allows us to fit 𝑁𝑁 unit cells along one circle, e.g. 𝑁𝑁 = 8 in 
Figure 1(a). If it is a 280° segment as in Figure 1(b,c), instead of a full circle, we set 𝜑𝜑 = 280

360
�2𝜋𝜋
𝑁𝑁
� 𝑦𝑦. A 

piece of wallpaper with 𝑀𝑀 × 𝑁𝑁 motifs is an area {(𝑥𝑥,𝑦𝑦)  | 0 ≤ 𝑥𝑥 ≤ 𝑀𝑀, 0 ≤ 𝑦𝑦 ≤ 𝑁𝑁} for positive integers 𝑀𝑀 
and 𝑁𝑁. If we do not use any mapping, we can sew the line {(𝑥𝑥, 0)  | 0 ≤ 𝑥𝑥 ≤ 𝑀𝑀} to the line {(𝑥𝑥,𝑁𝑁)  | 0 ≤
𝑥𝑥 ≤ 𝑀𝑀} and thus obtain a cylinder for which the motif goes around without disruption.   

If we sew the corresponding line after mapping, we obtain the cone of Figure 1(b). Upon closer 
inspection, however, we notice that something is not right, the puppytooth tiles are stretched more and more 
as we go down the cone. However, they are stretched in one direction and not in the other. To remedy this 
we need to make the steps Δ𝑟𝑟 between mapped unit cells such that the step becomes larger as 𝑟𝑟 becomes 
larger1. That sounds familiar: a function whose derivative behaves like the function itself. Indeed, we need 
an exponential function 𝑟𝑟 = 𝑒𝑒𝜔𝜔𝜔𝜔 (for some constant 𝜔𝜔). We will return to this formula later. 
 

Beyond Cones: Complex Numbers and Holomorphic Mappings 

Aiming at more interesting garments, we need a more general class of mappings. We focus on a rich class 
of morphing mappings, known as holomorphic. The theory of complex functions of complex variables [1] 
provides valuable concepts to define such mappings. We denote complex numbers by 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 where 𝑥𝑥 
and 𝑦𝑦 are real numbers and 𝑖𝑖 has the special property that 𝑖𝑖2 = −1. In Figure 2 we illustrate how a simple 
function on complex variables works as a mapping. 

 
Figure 2: Morphing the Pacman ghost motif by the  function 𝑓𝑓(𝑧𝑧) =  𝑧𝑧2.  

 
In Figure 2 we use the function 𝑓𝑓(𝑧𝑧) =  𝑧𝑧2. We show the area of numbers 𝑥𝑥 + 𝑖𝑖𝑖𝑖 for 0 ≤ 𝑥𝑥 ≤ 2 and 0 ≤
𝑦𝑦 ≤ 1.5 where the center of the left eye of the red Pacman ghost represents the number 𝑧𝑧 = 1.2 + 0.2𝑖𝑖. Let 
us calculate the square of that number: we find 𝑧𝑧2 = (1.2 + 0.2𝑖𝑖)2 = 1.44 + 2 × 0.24𝑖𝑖 + 0.22 × 𝑖𝑖2 =
1.44 + 0.48𝑖𝑖 + 0.04 × (−1) = 1.4 + 0.48𝑖𝑖. This 𝑧𝑧2 is the center of the blue ghost’s left eye. In the same 
way, all other points of the red ghost are mapped by the same function, which is how we found the blue 

 
1 This may sound like Riemann integration in polar coordinates.  However, there the goal is to keep Δ𝑟𝑟 constant and 
adjust the area formula. Here we let Δ𝑟𝑟 increase as we move outward. 
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ghost. We could continue by calculating 𝑧𝑧4 and thus see how the next ghost explodes beyond our number 
range (this example is taken from the artwork presented in my Bridges 2021 paper [2]). 

The concepts of differentiation and integration, which are well-known for functions on the real 
numbers, can be generalized to functions which are defined on the complex numbers, and which return 
complex results. The full theory is in [1], here we can only mention a few key elements. A holomorphic 
function is a function 𝑓𝑓(𝑥𝑥 + 𝑖𝑖𝑖𝑖) = 𝑢𝑢 + 𝑖𝑖𝑖𝑖 that is complex differentiable on some domain, where complex 
differentiability is given by the two conditions 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, known as the 
Cauchy-Riemann equations2.  In practice, the terms holomorphic and analytic3 are used interchangeably. 
Holomorphic functions with non-zero derivatives are conformal: they morph a 2D area into another area 
while preserving angles. If we consider very small squares (squares of infinitesimal size) then these are 
mapped to squares again (Figures 2 and 3). 

 
Figure 3: Conformal mapping of a coordinate grid.  

 

This theory is very powerful, so let us apply it to our earlier cone design – using exponentiation instead 
of squaring. We are allowed to have the special number 𝑖𝑖 inside the exponent using Euler’s formula 𝑒𝑒𝑖𝑖𝑖𝑖 =
cos𝜑𝜑 + 𝑖𝑖 sin𝜑𝜑. If in polar coordinates we have 𝜑𝜑 = (2𝜋𝜋/𝑁𝑁)𝑦𝑦 and  𝑟𝑟 = 𝑒𝑒𝜔𝜔𝜔𝜔, we can rewrite the mapped 
coordinate pair (𝑢𝑢, 𝑣𝑣) as a complex number 𝑤𝑤 = 𝑢𝑢 + 𝑖𝑖𝑖𝑖 and then the mapping (𝑥𝑥,𝑦𝑦)  ↦ 𝑤𝑤 has a single 
equation 𝑤𝑤 = 𝑒𝑒𝜔𝜔𝜔𝜔 × 𝑒𝑒𝑖𝑖(2𝜋𝜋/𝑁𝑁)𝑦𝑦. This is because multiplying with 𝑒𝑒𝑖𝑖𝑖𝑖 represents a rotation over 𝜑𝜑 (radians). 
Introducing 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 and choosing 𝜔𝜔 = 2𝜋𝜋/𝑁𝑁 we get simply 𝑤𝑤 = 𝑒𝑒𝜔𝜔𝜔𝜔. The choice for 𝜔𝜔 is not just based 
on the elegance of the formula, it is precisely the condition that guarantees that the motif is equally stretched 
in  the 𝑟𝑟 and 𝜑𝜑 directions. This is the analytic way to find a good, i.e. conformal, mapping for disks and 
cones (it works because any function of the form 𝑓𝑓(𝑧𝑧) = 𝑒𝑒𝜔𝜔𝜔𝜔 is holomorphic). 

If the contour of the morphed grid in Figure 3 would be the contour of our garment panel, then we 
could draw our motifs in the left grid, and next map by 𝑓𝑓. It would even be sufficient to have only the 
morphed grid, as we can then redraw the motifs while interpolating inside the grid cells. The question is: 
how do we find a grid inside a contour defined by arbitrary lines? Surprise: by electrical engineering. 

It is a hidden gem in electrical engineering that the theory of 2D electrostatic fields coincides with the 
theory of analytic functions. A real-valued function 𝜓𝜓(𝑧𝑧) where 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 satisfying 𝑑𝑑2𝜓𝜓/𝑑𝑑𝑥𝑥2 +
𝑑𝑑2𝜓𝜓/𝑑𝑑𝑦𝑦2 = 0  is said to be harmonic. Writing this condition as ∇2𝜓𝜓 = 0, known as Laplace's Equation, 
one recognizes that any harmonic 𝜓𝜓 is the potential of a charge-free electric field. The real and imaginary 
parts of a complex analytic function both satisfy the Laplace equation. Conversely, if we have a harmonic 
function 𝜓𝜓(𝑧𝑧), then we know that it is the real part of a complex function 𝜁𝜁(𝑧𝑧) = 𝜓𝜓(𝑧𝑧) + 𝑖𝑖𝑖𝑖(𝑧𝑧) for some 
function 𝜒𝜒(𝑧𝑧). The 𝜒𝜒 is essentially defined once we know 𝜓𝜓 and it is called the harmonic conjugate of  𝜓𝜓 
([1], p.201). Richard Feynman in Chapter 7 of [3] writes about this: “Now we come to a miraculous 

 
2 It can be checked that our function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 satisfies these conditions. We have 𝑢𝑢 = 𝑥𝑥2 − 𝑦𝑦2 and 𝑣𝑣 = 2𝑥𝑥𝑥𝑥 so 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜕𝜕(𝑥𝑥2 − 𝑦𝑦2)/𝜕𝜕𝜕𝜕 = 2𝑥𝑥 = 𝜕𝜕(2𝑥𝑥𝑥𝑥)/𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜕𝜕(𝑥𝑥2 − 𝑦𝑦2)/𝜕𝜕𝜕𝜕 = −2𝑦𝑦 = −𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. 
3 A function 𝑓𝑓(𝑥𝑥 + 𝑖𝑖𝑖𝑖) = 𝑢𝑢 + 𝑖𝑖𝑖𝑖 is analytic if it has a convergent power series, e.g. 𝑒𝑒𝑧𝑧 = 1 + 𝑧𝑧

1!
+ 𝑧𝑧2

2!
+ 𝑧𝑧3

3!
+ ⋯ . 
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mathematical theorem which is so delightful that we shall leave the proof of it for one of your courses in 
mathematics. For any ‘ordinary function’ (..), the functions 𝜓𝜓 and 𝜒𝜒 automatically satisfy the relations 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕/𝑑𝑑𝑑𝑑, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = −𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕.”  The 𝜒𝜒 is uniquely defined up to a constant if we know 𝜓𝜓.  For 
computing equipotential lines and field lines, this constant will not be important in the end, so this does not 
change our results. In the same way in which 𝜓𝜓 defines the distances between the equipotential lines, we 
should use the harmonic conjugate to find the distances between field lines. 

                                       
(a)                                                           (b) 

Figure 4: Finding a grid inside a 2D capacitor. (a) color-coded potential 𝜓𝜓 and field lines. (b) color-
coded conjugate harmonic field 𝜒𝜒 with both field lines and equipotential lines. 

By way of illustration, we show the field lines inside a 2D capacitor in Figure 4. The upper plate is a 
conductor fixed at +1 volt whereas the lower plate is kept at 0 volt. The potential in the area between the 
plates is a real-valued function of 𝑥𝑥 and 𝑦𝑦, denoted by 𝜓𝜓(𝑥𝑥 + 𝑖𝑖𝑖𝑖), which is color coded: yellow is the 
highest voltage (here 1) and dark purple is the lowest, green and blue being in-between values.  The plate 
voltages act as boundary conditions and, in principle, we have enough information to solve Laplace’s 
equation. Once we have 𝜓𝜓, the field lines can be derived as we know the direction of electric field 𝐸𝐸=
−grad 𝜓𝜓 where grad 𝜓𝜓 has components 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. Thus we can find a field line of 𝜓𝜓 from any 
desired starting point. Note the auxiliary line and the black dots in Figure 4, they form a “scaffold” 
that defines the points through which the field lines must pass. 

                
(a)                                                                   (b) 

Figure 5: From potentials to garments. (a) field lines and equipotential lines. (b) mapped motif. 
 

From this, we move to garment panels, Figure 5 shows the main idea.  More implementation details 
can be found in the supplementary material. We just mention the ingredients by keywords: Bézier curves 
for user-defined contour lines, path integration for computing the conjugate harmonic, relaxation for solving 
the Laplace equation, Dirichlet and Neumann conditions for the horizontal and vertical contour lines, 
bilinear interpolation for mapping motifs in grid cells, and coding in Python (www.python.org). The code 
is available on  github.com/LoeFeijs/HolomorphicMappings, but it is still very experimental.    
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Experimenting with the Holomorphic Mappings 

When sewing panels together, conditions apply. First, the lengths 
of the sides should be equal. Next, the motif should match; for 
example, the upper and lower sides in Figure 5(b) match, as do the 
left and right sides. However, an upper line does not align with a 
left side (despite the fact that we use a motif whose symmetry is 
compatible with a 90° turn; the squeezing and stretching of tiles 
is different as can be seen in Figure 5b). One fashion idea was to 
create waves sewn along curved seams. To make the motif match, 
the scaffold line is placed near the edge4 and its points positioned 
equidistantly, neglecting the conjugate potential (Figure 6). 
Although the left and right sides do not match well, we moved to 
garment construction (scale 1:4).                                                           Figure 6: Equidistant scaffolding. 

The overall design of the skirt is cone-like, yet with corners where the linear segments meet. The seam 
is highlighted by a strip of lace that stands out from the fabric (Figure 7).  

 
Figure 7: Wave skirt with morphed motif. 

In another experiment we created four-sided narrow panels, with different combinations of equidistant and 
non-equidistant scaffolding. Assembling five panels, we created a jacket at scale 1:4, see Figures 8 and 9.  

 
4 Ideally, the scaffold line should be on exactly on the edge. However, we found that the field line direction-finding is 
inaccurate near the edge, probably due to the pixelation effects of writing the boundary condition into an array. Our 
implementation constructs field lines by starting inside the boundary, making a final jump towards the edge by using 
the fact that the field line must be orthogonal to the edge (for which we have a polynomial formula). 
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Figure 8: Narrow-panels based garment.  

The design of the garments in Figures 7 and 8 was the most fun part of the project, because of the intense 
cooperation and interaction among the team members. While the tech-savvy Rong-Hao and Loe 
independently conceived the idea of using electric field lines and wrote hard-to-explain code, the fashion-
savvy Holly and Marina envisioned new ways of creating garments, waves, mixed panel designs, 3D 
effects, and exciting sleeve-forms.                      

       
Figure 9: Details of some (almost) matching seams. 
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A Traditional Garment 

We tested the basic pattern of Figure 10(a), used at Fashion Tech Farm (https://fashiontechfarm.com), 
encountering new challenges. First, the half-front panel does not have four sides but six for which we used 
three voltages (the other half-front is a copy). Next, there are darts, so we modified the relaxation algorithm 
to perform “worm holing” over the darts and the field line algorithm to jump across the darts. The sleeve is 
a four-sided panel, but its field lines do not match those of the body panels. Inspired by the notion of analytic 
continuation ([1], p.283), we added an extra conductor onto the sleeve (near the top, vertical). Computing 
the harmonic conjugate was confusing at first: our path integration yielded results that depended on the 
path.  Then we remembered the residue theorem in complex analysis, which states that there is an increase 
of 2𝜋𝜋𝜋𝜋 times a “residue” for each tour the path makes around a pole ([1], p.172). The sleeve of Figure 10(d) 
reveals the harmonic conjugate, and we observe the “date line” (diagonal, where the yellow and blue meet, 
rightmost on the sleeve). We had to stop the equipotential lines, otherwise they would run around the extra 
conductor forever.  The scaffold lines are cut into more pieces than necessary, but this gave us some more 
fine-grained control over the field lines during experimentation. 

This garment is not yet implemented; the design is stored away for future exploration. The open 
problems include the singularity on the sleeve’s sewing line (where we encounter pentagonal grid cells). 
We may also require additional symmetries in the tessellation to get connecting motifs (like the double L 
motif of Figure 5(b) or the modified pied-de-poules with 180° rotational symmetry already used in Figure 
8). For pied-de-poule, whose tiles have long tails, we must cut through the tiles anyhow — still we want 
the motifs to be whole again on the finished garment.                                                         

                    
(a)                               (b)                                (c)                                   (d) 

Figure 10: Computed grids for a full garment: (a) traditional garment panel. (b) front panel potential 
and grid, (c) back panel potential and grid, (d) sleeve with extra conductor, conjugate harmonic, grid. 

A Full-Size Garment 
We used the cone-like mapping for the dress shown in Figure 11. The cone pattern is a 360° segment, i.e., 
a disk and we deploy the exponential function 𝑤𝑤 = 𝑒𝑒𝜔𝜔𝜔𝜔 as discussed earlier. The dress incorporates the red 
herring and Aruco code concepts already presented at Bridges 2024. The dress is a huge showpiece, 
showcased during Dutch Design Week and on the catwalk of the Next-Future Fashion show in Eindhoven.  
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Figure 11: Red Herring dress with Aruco Codes and Pied-de-poule motif based on a seamless cone 

pattern (model Esmee Kobes, photographer Holly Krueger). 
 

Summary and Conclusions 

The dress of Figure 11 is impressive by its size, and also interesting due to its potential role on the debate 
about ArUco codes and camera observations. To turn more general holomorphic mappings into fashion 
pieces is more adventurous — the adventure is still ongoing.  The combined garment and motif geometries 
have an exciting appearance. At the same time, they illustrate the theory of analytic functions in an 
uncommon manner. Acknowledgements: We thank Troy Nachtigall and the Fashion Tech Farm and TU/e 
Wearable Senses communities for their support and the Bridges reviewers for their valuable feedback. 
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