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Abstract  

In this workshop, we’ll explore how to create visual patterns using Kronecker powers on square matrices. 

Participants will create unique designs using plastic beads. We’ll also discuss pedagogical strategies to encourage 

participants to pose and explore original problems about designs created using this method. We will share Python 

code that will allow for participants to further explore these patterns.  

 

Introduction 

As mathematics teachers, we aim to foster a sense of curiosity in our students. Creating mathematical art 

encourages students to take risks  and ask “what-if” questions. The activity presented below is accessible 

to students in middle and high school. This activity creates bead art using a matrix operation that may be 

new to participants. Creating art using this matrix operation presents many opportunities to tweak 

parameters and explore the outcomes of the change, allowing opportunities for creativity.  

 

Mathematical Background 

Let’s begin by considering the sequence of three matrices shown in Figure 1: 

 

𝐴1 = [
1 1
1 0

], 𝐴2 = [

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

] , 𝐴3 =

[
 
 
 
 
 
 
 
1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]

 
 
 
 
 
 
 

 

 
Figure 1:  A sequence of three matrices. 

 

Examining these matrices closely, you may discover a pattern in the way that 𝐴2 and 𝐴3 were 

constructed from 𝐴1.  

The matrix operation used to create this sequence is known as the Kronecker product. The Kronecker 

product ⨂ is defined as follows, where 𝑎𝑖𝑗 refers to the entry in the ith row and the jth column of 𝐴: 

𝐴⨂𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
] 

If A is an 𝑚× 𝑛 matrix and 𝐵 is a 𝑝 × 𝑞 matrix, then 𝐴⨂𝐵 will be a 𝑚𝑝 × 𝑛𝑞 matrix. Referring back 

to Figure 1, we can see that: 

𝐴2 = 𝐴1⊗𝐴1 = [
1 ∙ 𝐴1 1 ∙ 𝐴1
1 ∙ 𝐴1 0 ∙ 𝐴1

] 

and 
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𝐴3 = 𝐴1⊗𝐴2 = [
1 ∙ 𝐴2 1 ∙ 𝐴2
1 ∙ 𝐴2 0 ∙ 𝐴2

] 

We could continue to create terms in this sequence by taking further Kronecker powers of 𝐴1. The nth 

Kronecker power 𝐴⨂𝑛 is defined as taking the Kronecker product of 𝐴 with itself 𝑛 times: 

 

𝐴⨂𝑛 = 𝐴⨂𝐴⨂𝐴…⨂𝐴⏟          
n times

 

Thus, another way to write the matrices shown in Figure 1 is : 

𝐴2 = 𝐴1
⨂2 and 𝐴3 = 𝐴1

⨂3. 

 It is interesting to take Kronecker powers of matrices whose entries are all 0s or 1s, the set of (0,1)-
matrices. We find Kronecker powers of these matrices interesting for two reasons.  

First, they are closed under the operation of the Kronecker product. If we take the Kronecker product 

of two (0,1)-matrices, the result is also a (0,1)-matrix.  

Secondly, Kronecker powers of (0,1)-matrices are self-similar. By this, we mean that smaller parts of 

the resulting matrix will resemble the structure of the overall matrix. We will see that this property will 

result in visualizations that approximate fractals that participants may already be familiar with.  

A (0,1)-matrix is equivalent to a grid where each cell can be colored black or white. We’ll use this 

equivalence in the next section to create beaded pieces of art.  

 

Creating Bead Art  

Now we will use Kronecker powers to create physical objects using plastic melty beads. The beads provide 

an easy entry point for visual exploration. In the United States, the beads we’re using can be bought 

inexpensively in the thousands under the brand name “Perler Beads.” They are also known as Hama beads 

or Nabbi beads in other countries.  

To complete the following activity, each participant will need a plastic pegboard that the beads fit onto 

and at least 200 beads of each color. A pair of tweezers is also helpful in placing the beads. Parchment 

paper and an iron will also be needed for melting the beads together.  

The first step is for the participant to create their seed (0,1)-matrix. We recommend beginning with a 

2 × 2 seed matrix. While this suggestion restricts us to only a few starting matrices, it is possible to be 

creative with larger seed matrices after exploring the underlying structure of these matrices using Kronecker 

powers and beads. For the examples in this paper, we’ll refer to the seed matrix as matrix A. For the 

following example, the seed matrix A will be the matrix 𝐴1 from Figure 1. 

 The second step is to decide which color will represent 0 and which color will represent 1. We’ll 

represent 1 with black beads and 0 with white beads.  

The next step is to put one copy of beads that represent the seed matrix onto the pegboard. It should 

be placed near the corner of the board. It will not be part of the finished design but will serve as a reminder 

of the seed matrix. This setup is shown in Figure 2.  

Dennett and Bolognese

612



 

 

 

 

 

Figure 2:  The initial setup with the seed matrix. 

Now we create a representation of 𝐴⨂2. To do so, we want to think of creating a 4 ×  4 matrix out of 

four 2 ×  2 matrices. Each of the 2 ×  2 matrices will be a quadrant of the 4 ×  4 matrix. To decide how 

to create each of these quadrants, we’ll look at the seed matrix. If the bead in the corresponding quadrant is 

a 1, then a copy of the seed matrix is built in that quadrant. If the bead in the corresponding quadrant is a 0, 

then the entire quadrant is built out of white beads. Figure 3 shows the process after this step.  

 

Figure 3:  The seed matrix and 𝐴⨂2. 

We continue similarly to create the visual representation 𝐴⨂3. A copy of 𝐴⨂2 is now placed in any 

quadrant that has a 1 in the corresponding position of the seed matrix. White beads fill in the entire quadrant 

if a 0 is in the corresponding position of the seed matrix. Figure 4 shows 𝐴⨂3 and 𝐴⨂4. 
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Figure 4:  𝐴⨂3 𝑎𝑛𝑑 𝐴⨂4. 

Once all of these beads are placed, the copy of the seed matrix that was placed in the corner can 

carefully be removed and the beads can be fused. To fuse, the beads should be covered with a piece of 

parchment paper and then an iron can be placed gently on top of the parchment paper until the beads are 

fully fused. This process generally takes about 10 – 30 seconds. Once the first side has been fused, the 

beads can carefully be removed from the pegboard and turned over. Then the parchment paper should be 

placed on top of the other side of the beads and the iron should be used to fuse that side. The example that 

we’ve created approximates the Sierpinski Triangle. Figure 5 shows the final product after the beads have 

been fused next to the Sierpinski Triangle. 

 

        

 (a)                                                                         (b)  

Figure 5:  (a) final product,  (b) Sierpinski Triangle. 
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 Starting with a seed matrix with larger dimensions allows for many more starting possibilities. Figures 

6 and 7 show the starting seed matrix, the beaded version of 𝐴⨂3, and a picture of a well-known fractal the 

beaded version approximates.  

 

[
1 1 1
1 0 1
1 1 1

] 

  
 

 Figure 6:  (a) seed matrix,  (b) beaded result, (c) Sierpinski carpet. 

[
0 1 0
1 1 1
0 1 0

] 

  
   

 

 Figure 7:  (a) seed matrix,  (b) beaded result, (c) Vicsek fractal 

 

Pedagogical Implications and Extensions 

Jeremy Kilpatrick, a prolific researcher of mathematics education stated, “[T]he experience of discovering 

and creating one’s own mathematics problems ought to be part of every student’s education” [2]. He argues 

that almost all of the problems that students encounter outside of the classroom will not be given to them 

by a textbook or authority figure, but rather ones that they must formulate themselves. One way that teachers 

can help facilitate students creating their own problems is to help students make a new problem out of an 

existing one. This generation of new problems by students is called problem posing. 

 Brown and Walter discuss what they call the “What-If-Not” strategy for problem posing [1]. This 

strategy consists of making a list of attributes about a problem that already exists and exploring how one 
change modifies the problem. Designs created by Kronecker powers allows the practice of this method of 

problem generation. The following properties can be listed about the process we’ve explored: 
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1. The seed matrix is square.  

2. The seed matrix only has entries of 0 and 1.  

3. Kronecker powers are used to generate a new matrix.  

 

Via problem-posing, it is possible to explore how modifying these parameters can change the behavior. 

These new explorations help unlock understanding about underlying structure and patterns. Here are a few 

examples of possible problems that could be explored:  

1. The seed matrix is a non-square matrix, such as a 2 × 3 matrix.  

2. The seed matrix is not a (0, 1)-matrix. For example, the seed matrix could be a (−1,1)-matrix.  

3. The seed matrix has entries with absolute values of less than 1. A grayscale or color spectrum 

is used to color the resulting values.  

 

Figures 8 and 9 show a possible outcome of exploring using a (-1,1)-matrix as a seed matrix. While 

these matrices do not have the same self-similar property that the (0,1)-matrices exhibited, we are still 

intrigued by the designs they create. One possible question that could be explored are the necessary 

conditions for Kronecker powers to result in a self-similar matrix.  

 

[
1 1 −1
−1 1 −1
−1 1 1

] 

  

(a) (b) (c) 

 

 

 

Figure 8:  (a) seed matrix,  (b) visualization of the seed matrix, (c) beaded result of Kronecker 

powers 
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[
1 −1 −1
−1 1 −1
−1 −1 1

] 

  
(a) (b) (c) 

  

 

 Figure 9:  (a) seed matrix,  (b) visualization of the seed matrix, (c) beaded result of 

Kronecker powers 

 

 

 Figure 10 shows one example of a visualization that can be made if the seed matrix is a (−1,0,1)-
matrix.  

[
1 −1 0
−1 1 −1
0 −1 1

] 

  
(a) (b) (c) 

  

 

 Figure 10:  (a) seed matrix,  (b) visualization of the seed matrix, (c) beaded result of 

Kronecker powers 

 

  

 

In addition to creating a new mathematical problem, it is possible to explore other constraints such as 

the ratio of black to white squares as we take lim
𝑛→∞

𝐴⨂𝑛.   
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Exploring Kronecker Powers with Python Code 

While creating the matrices out of beads provides a fruitful tactile experience to make a physical object, 

using beads to explore new problems may be time-consuming and impractical. As an option to support 

problem posing exploration, it is possible to use Python code to help automate the process of building 

matrices through Kronecker powers [3]. 

 The Python library numpy has the kron operation . The following code segment can be used to 

define and print a new matrix as the Kronecker product of h0 with itself. This code quickly generates the 

example shown earlier in Figure 1: 

 

 
h0 = [[1,1], [1,0]] 

h1 = kron(h0,h0) 

h2 = kron(h1,h0) 

print(h2) 

 

[[1 1 1 1 1 1 1 1] 

 [1 0 1 0 1 0 1 0] 

 [1 1 0 0 1 1 0 0] 

 [1 0 0 0 1 0 0 0] 

 [1 1 1 1 0 0 0 0] 

 [1 0 1 0 0 0 0 0] 

 [1 1 0 0 0 0 0 0] 

 [1 0 0 0 0 0 0 0]] 

 

 

The script in [3] can be used to create a visual display of the entries in a matrix, where 1 corresponds 

to black and 0 corresponds to white. The function that displays the contents of a matrix is named 

display_matrix. The script can be used to investigate other modifications, such as using entries 

besides 1 and 0, or using a non-square seed matrix. 
 

 

Summary and Conclusions 

Using matrices to generate mathematical visualization is accessible for all. For students, even if students 

are unfamiliar with matrices or matrix theory is not in the curriculum, generating new questions and 

exploring their outcomes are powerful mathematical dispositions. This activity bridges the tactile 

experience of making physical art with using digital tools like Python to create more advanced patterns.  
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