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Abstract  
This paper presents a map projection based using Gosper Island fractals to create a constant area world  map with 
hexagonal-like tiles. The tile’s self-similarity facilitates rendering the map at various scales and resolutions. The 
globe is projected into into a rhombic dodecahedron, which is then unfolded and transformed into a map in a 
hexagonal grid which can be rearranged into multiple configurations.  

 

Figure 1:  The Gosper world map. 

Introduction 
Most maps are designed to say something about the world, but some are designed to say something about 
maps. This paper is a case of the latter. While it is true that the mark of a good tool is that it doesn’t 
require you to think about it, when we normalize the distortions that most everyday maps carry, we risk 
internalizing an incorrect view of our own planet and our place in it. While most maps are often presented 
in a rectangular or oval form which will necessarily carry some extreme distortions on the edges, some 
remarkable maps have avoided that by creating a more fragmented overall shape. Notable examples of 
these would be the Cahill’s “Flower”, Buckminster Fuller’s Dymaxion map and Waterman’s Butterfly 
projections (see Figure 2). 

The map presented on Figure 1 is just one configuration of a more general system. Other layouts will 
be used later in the paper and even more more renderings can be downloaded in the supplemental 
material. 
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(a)                                                        (b)                                                        (c)                                                             
Figure 2:  (a) Cahill’s “Flower”, 1909, (b) Fuller’s “Dymaxion”, 1954 (c) Waterman’s “Butterfly”, 1996 

Gosper Island Grid 
Most coordinate systems use a square grid, for among its characteristics, its ease of subdivision into 
smaller subgrids. Hexagonal grids are a common alternative, usually chosen for the fact that they offer 
uniform distances among their neighbors, facilitating approximations of calculations of radius and 
circular areas (see Figure 3a and 3b). However, a hexagonal grid does not subdivide very easily: while 
there are many ways to divide a single hexagon into smaller shapes, these will not overlap perfectly with 
their parents [6, 7], creating points on the map that might belong hierarchically to two different roots, 
depending on which level you are considering (see the small red area highlighted in Figure 3c). A good 
compromise between these two grid types is to use Gosper Islands (Figure 3d), a fractal with hexagonal 
symmetry which offers both a grid with six uniformly distanced neighbors and a perfectly self-similar 
subdivision of cells [4]. 

                         
(a)                                        (b)                                        (c)                                        (d) 

Figure 3:  (a) square grid, (b) hexagonal grid, (c) hierarchical hexagonal grid, (d) Gosper Island     

A notable example of a hierarchical hexagonal grid is Uber’s “H3”, which uses such a system to 
store and analyze its global data on car rides [1]. However, “H3” does not use solely hexagons; it employs 
a gnomonic projection centered on an icosahedron. The 12 vertices of the icosahedron are transformed 
into 12 pentagonal faces by carving the 20 triangular faces into a great number of hexagons, depending on 
the desired map resolution. The positions of the pentagons are based on Fuller’s Dymaxion, which avoids 
major landmasses; however, the existence of the pentagons might not be appropriate for all use cases. For 
example, a video game designer who wants to display a world map using solely hexagonal tiles would 
have to keep these pentagons inaccessible, and a map designer who wishes to show the flattened map with 
only hexagons might have to 'fill in' blank areas with non-existent oceans [5]. The Dymaxion overall 
shape, while iconic, also might have too many acute corners and empty spaces for some applications. 

Rus [3] demonstrated that it’s possible for a grid of pure hexagons to fold into polyhedrons, folding 
four hexagons into both an octahedron and a tetrakis hexahedron. In this process, some hexagons are bent 
or connect to the same neighbor twice, meaning it’s not a polyhedron made of hexagonal faces, but rather 
a hexagonal network folded around the faces of a solid. This paper applies Rus’ method to the rhombic 
dodecahedron (Figure 4a), a Catalan solid known for its space-tiling properties, analogous to how 
hexagons tile a plane. Both shapes can be created by putting pyramids on the faces of a cube, so by 
manipulating the height of the pyramid (therefore the face’s length), one can be transform into the other. 
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Figure 4:  an unfolded rhombic dodecahedron and its transformation into a hexagonal grid      
The globe is projected using Furuti’s rhombic dodecahedron map [2], with the poles located at the 

centers of the top and bottom faces (Figure 4a). Each rhombic face is then stretched along the longer 
diagonal by a factor of  so that they form golden rhombi (composed of two equilateral 
triangles), allowing them to be arranged into four hexagons (Figure 4b). This process creates less 
distortion than a direct gnomonic projection on a tetrakis hexahedron (see Figure 4c, and refer to the 
supplemental material for details). The result is a set of four Gosper islands (or simply hexagons if 
preferred) that can be subdivided and rearranged to create a reconfigurable map, in the spirit of Lee’s 
Tetrahedral or the award-winning Authagraph projection [3]. 

Figure 5:  The four main Gosper tiles and the position of their neighbors. Red lines indicate a 
discontinuity. The overall shape is also a Gosper Island. 

The hexagonal nature of the tiles allows for easy comparisons of area sizes (Figure 1 demonstrates 
the areas of the hexagons) as well as calculating simplified routes that traverse the globe, including 
transpolar routes, as seen in Figure 5. Since the main tiles are hexagonal and not triangular, the result 
tends to have fewer empty spaces compared to those based on an icosahedral projection.  

A common way to demonstrate map distortion is through a Tissot indicatrix, where a series of 
equally sized circles are overlaid on the map. As shown in Figure 7 (on the next page), the Gosper World 
map renders all circles as squished ovals, but of similar size. In other 
words, overall distortion is not concentrated on the edges; instead, area 
distortion is minimized while angular distortion is kept mostly uniform.  

Other applications 
The method can also be applied to panoramic images as a way to 
present them as tileable hexagons (Figure 6). Further applications for a 
globe using fractal tiles could include simulations such as cellular 
automata that can be calculated at higher precisions in areas of interest 
but then applied at a coarser resolution on the rest of the globe so that 
small local phenomena can affect the whole planet and vice versa. 

2/ 3 ≈ 0.8164

Figure 6:  panorama of 
Celestine Palace, Lecce, Italy 
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Figure 7:  Tissot indicatrix: (a) Gosper World (b) Dymaxion (c) Robinson Projection (d) Autagraph 
                                                                

Conclusion 
There are many applications for an area-accurate world map using only hexagons: an infographic that 
displays some value per area using dots; a video game that uses only hexagonal art assets yet wants to 
have a spherical world; a board game that allows easy movement of units across an accurate world map; a 
classroom puzzle that helps students create their own map that matches their perspective. In these use 
cases, a designer will often overlay a hexagonal grid on a standard rectangular map (retaining the 
underlying distortion), or in some cases base their work on a Dymaxion map but fill the empty spaces 
with ocean. It is my hope that this work presents an interesting alternative for map designers everywhere, 
as well as a fun new tool for teachers of all kinds 
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