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Abstract

We introduce and study the topological and geometric properties of a cell growth process in the Euclidean plane,
where the cells are regular pentagons. An artistic activation of this model enables a participatory and generative
installation of random asymmetries and an infinite number of holes that remain uncovered.

The Model

The model involves randomly attaching regular pentagons along their edges, ensuring no overlap between
any two pentagons. More precisely, let 𝑃0 be a regular pentagon centered at the origin. Assume that 𝑛-th
pentagon 𝑃𝑛 has been positioned. Define 𝐹 (𝑛) as the set of ‘Free sides’, comprising the pentagon sides
𝑠 where attaching a new pentagon to 𝑠 avoids overlap with any of 𝑃0, . . . , 𝑃𝑛. Then, a side is randomly
chosen from 𝐹 (𝑛) and a new pentagon 𝑃𝑛+1 is attached along it, forming the (𝑛+ 1)-th instance of the model.
Subsequently, the set of Free sides is updated: 𝐹 (𝑛 + 1) includes 𝐹 (𝑛) along with the new sides of the
new pentagon, minus the sides that might now cause overlap with 𝑃0, . . . , 𝑃𝑛, 𝑃𝑛+1. This random process is
inspired by the Eden Model which is a First Passage Percolation Process (FPP) based on the regular square
tessellation of the plane [2]. Recently [1, 3, 4], people have studied the topology of FPP processes based
on lattices. Simulations of the Eden Model are available, see [3]. In the pentagon model, we do not have
an underlying lattice and there will be holes that become impossible to cover at any future time. One of the
consequences of this fact is that in the pentagon model, there is also no notion of a convex limiting shape.
Moreover, we can observe from our simulations that the perimeter and the number of holes grow linearly with
respect to the number of tiles, which differs from the behavior of the classical FPP models based on lattices.

(a) Cell growth model with 200 pentagons (b) Model with 5000 pentagons

Figure 1: The black pentagon is centered at the origin. The colors of the tiles reflect the stage at which that
pentagon was placed. The underlying tree represents how the pentagons were attached.
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Geometrical and Topological Properties

A simple non-intuitive fact is that pentagons come only in two orientations, the first one and its “reflection.”

Lemma 0.1. Let �0 be the original pentagon and �1 a reflection of �0 over one side. Then, all pentagons
in the model are translations of �0 or �1. Moreover, the sides of all pentagons intersect at angles that are
multiples of 36◦.

Proof. Let � be the set of five lines through the origin which are parallel to the sides of �0. The lines in �

meet at angles that are multiples of 36◦. When a new pentagon is glued, it is obtained by reflecting over the
gluing side. The angles do not change under reflection, and one side remains fixed. Therefore, the sides of
any new pentagon are still parallel to the lines in �. We conclude that all the pentagons in the model have
sides parallel to � and therefore can only be in two possible orientations. Moreover, any two sides of any two
pentagons must intersect at the same angles as two lines in �, that is, at angles that are multiples of 36◦. �

Figure 2: Orientations and directional vectors
of possible neighboring centers.

We proceed to analyze the locus of centers of possible
pentagons within the model. The center of a new possible
pentagon can be obtained by translating the center of the
old pentagon along 5 vectors, see Figure 2. We denote
these vectors by ��1, ��2, ��3, ��4, ��5. These can be assumed
to be unit vectors, but all of our analysis is independent
of scale. Let us regard {��1, ��2} as a basis for R2. Then
��3, = −��1 + ���2, ��4 = −���1 − ���2, and ��5 = ���1 − ��2,

where � = 2 cos(2�/5) =
√

5−1
2 . Since � is irrational,

the usual argument shows that the set of integer linear
combinations of the vectors ��1, ��2, ��3, ��4, ��5 form a dense
subset of R2. Let � be the distance from the center of a pentagon to one of its vertices. We conjecture that
the set of possible centers of the pentagons in the model is dense outside a disk of radius 2�. To prove this
conjecture we need to consider the non-overlapping geometric constraint of the pentagons. This difficulty
might be overcome by choosing an appropriate geometric realization of the linear combination by deciding
a plausible order in which the pentagons are glued. Additionally, a linear combination remains unchanged
when we add a term +��� − ��� . Geometrically, this corresponds to adding a pair of pentagons represented
by opposite vectors ��� and −��� , in this way the linear combination remains unchanged but the geometric
realization has more freedom. These two choices should give us enough maneuverability to avoid overlapping
when a linear combination is transformed back to pentagons.

The Graph
In what follows, we study properties and the growth of the number of vertices, edges, and holes of the graph
formed by the pentagons. We will distinguish between the sides of the pentagons and the edges of the graph.
A side could be split into 2 edges. For example, in Figures 3 (b) and (c), the 4 new sides of the red pentagon
contribute to 5 new edges of the graph. Summarizing, the graph of the model comprises the vertices and
sides of the pentagons, with the convention that if a vertex lies on the side of another pentagon, then such side
will be regarded as two distinct shorter edges. A hole is a bounded connected component of the complement
of the union of all pentagons.

When a new pentagon is attached, besides the gluing edge, it can touch the existing structure in a
combination of 4 different configurations, as shown in Figure 3. In each case, adding a new pentagon
increases the number of vertices by at most 3, the number of edges by at most 8 (two per side of the
pentagon), and the number of holes by at most 8 (one per new edge). We conjecture the following limits,
supported by numerical simulations as shown in Figure 4.
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(a) Edge-edge (b) Partial edge (c) Vertex-Edge (d) Vertex-vertex

Figure 3: A new pentagon (red) can touch the rest of the structure in a combination of 4 different ways.

Conjecture 0.2. Let 𝑛 be the number of pentagons in the model, 𝑉 (𝑛), 𝐸 (𝑛), and 𝐻 (𝑛) the number of
vertices, edges, and holes, respectively. Then, the expected value of these parameters satisfies the following
limits:

lim
𝑛→∞

E[𝑉 (𝑛)]
𝑛

≈ 2.68, lim
𝑛→∞

E[𝐸 (𝑛)]
𝑛

≈ 4.04, lim
𝑛→∞

E[𝐻 (𝑛)]
𝑛

≈ 0.36.

During the simulations, 𝑉 (𝑛) and 𝐸 (𝑛) were kept track of, while 𝐻 (𝑛) was determined using Euler’s
formula for planar graphs: 𝑉 (𝑛) −𝐸 (𝑛) + (𝑛+𝐻 (𝑛) +1) = 2. Where the number of faces, 𝐹 (𝑛) = 𝑛+𝐻 (𝑛) +1,
accounts for pentagons, holes, and the unbounded face.

Figure 4: Growth of graph parameters with respect to the number of pentagons 𝑛.

Description and Analysis of Holes
Recall that all the sides of the pentagons form angles that are multiples of 36◦ between themselves. Thus,
the holes are polygons whose angles are multiples of 36◦. Examples of holes discovered in the simulations
are illustrated in Figure 5. Consider a hole with 𝑙 sides whose angles are 36◦𝑎𝑖 for some positive integers 𝑎𝑖 ,
1 ≤ 𝑖 ≤ 𝑙. The interior angle sum of the hole polygon is 36◦𝑎1 + 36◦𝑎2 + . . . + 36◦𝑎𝑙 = 180◦(𝑙 − 2). This
provides a necessary condition for the 𝑎𝑖’s, namely, 𝑎1 + 𝑎2 + · · · + 𝑎𝑙 = 5(𝑙 − 2).

Consequently, up to scale, only two distinct types of triangular holes are possible. These corre-
spond to solutions (𝑎1, 𝑎2, 𝑎3) = (1, 2, 2) and (1, 1, 3), resulting in triangles with angles (36◦, 72◦, 72◦) and
(36◦, 36◦, 108◦), respectively. Type (36◦, 72◦, 72◦) is shown in Figure 5(a). We have not observed a hole of
type (36◦, 36◦, 108◦), however it can be created by pentagons whose centers are in the locus of centers of the
model, Figure 5(b).

The angle types of quadrilateral holes (up to rotation and reflection) can be (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (1,1,1,7),
(1,1,2,6), (1,2,1,6), (1,1,4,4), (1,4,1,4), (1,2,3,4), (1,2,4,3), (1,3,2,4), (2,2,2,4), (2,4,2,4), (2,2,3,3), or (2,3,2,3).
It remains unclear whether these configurations are feasible. Our simulations have shown one hole of type
(1,1,1,7) and two instances of type (1,4,1,4), Figure 5 (c), (d), and (e), respectively.
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(a) Triangle (b) Triangle 2 (c) Arrow (d) Parallelogram (e) Diamond (f) Ship

(g) Three peaks (h) Crown (i) Double ship (j) Pigeon (k) Triple ship (l) Claw

(m) Whale (n) Fox (o) Bird (p) Deer

Figure 5: Except for (b), all images of holes were obtained in our simulations. The model is likely to
generate infinitely many different holes that remain uncovered forever.

Towards Developing an Exhibition

Figure 6: Model with 200 pentagons.

Figure 6 shows a physical realization of Figure 1(a) using
a laser cutter on wood with an engraved acrylic layer lying
on top, showing the growing tree. We understand contem-
porary art through the working progress mind setting that
gives more value to the artistic process over the final ob-
ject that is usually prefixed and that reaches an end state.
This inspired us to propose a hands-on and collaborative
exhibition where the public will place the pentagons on a
citizen simulated cell growth process on different surfaces
at an exhibition room at DESFOGA 2024, Cambados,
Spain. DESFOGA is a curatorial program in Cambados
that questions powers, inequalities, and all forms of hu-
man rights violations through performances, installations,
and exhibitions.

References

[1] D. M. Hua, F. Manin, T. Queer, and T. Wang. “Local behavior of the Eden model on graphs and
tessellations of manifolds.” Journal of Applied and Computational Topology, Springer, 2023.

[2] E. Murray. “A two-dimensional growth process.” Dynamics of fractal surfaces, 1961.
[3] F. Manin, E. Roldan, and B. Schweinhart. “Topology and local geometry of the Eden model.” Discrete

& Computational Geometry, Springer, 2023. Simulations: https://www.erikaroldan.net/topology-eden-model.
[4] M. Damron, J. Gold, W. Lam, and X. Shen. “On the number and size of holes in the growing ball of

first-passage percolation.” Transactions of the American Mathematical Society, 2024.
[5] B. Cuquejo, and M. Daporta. DESFOGA, Plataforma cultural. 2023. https://desfoga.eu/

Roldán, Silva, and Enriquez

494

https://www.erikaroldan.net/topology-eden-model
https://desfoga.eu/



