Bridges 2024 Conference Proceedings

Escher: An Engine for Exploring Hierarchical Combinatorial Tilings

John C. Bowers! and Dakota Lawson?

Department of Computer Science, James Madison University, Harrisonburg, Virginia, USA
"bowersjc @jmu.edu ?Jawsonde @dukes.jmu.edu

Abstract

In this paper we present a tool for creating combinatorial tilings defined by finite subdivision rules. Like their better
known geometric counterparts (for example Penrose tiles), combinatorial tilings are formed by a finite tile set glued
together along their sides. Unlike geometric tilings, however, combinatorial tilings have no inherent geometry and are
endowed with geometry after the fact using graph drawing methods. Subdivision tilings are a type of combinatorial
tiling that are defined recursively. Such tilings have interesting mathematical properties. Our open source tool,
Escher, allows a user to define new tilings, compute properties of the tilings, and produce drawings of them. The
Escher engine has both a Python library for exploring tilings using code as well as a simplified language for defining
tilings and producing drawings of them that is designed to be accessible to non-programmers.

Introduction

Geometric tilings like the famous Penrose tilings, or the girih tiles found in Turkish-Islamic art, are well
known to many interested in the intersection of art and mathematics. Some tilings are periodic, meaning
they admit some global symmetry, like the square grid or the hexagonal honeycomb; others, like those of
Penrose, are aperiodic, meaning they admit no global symmetries. Aperiodic tilings are rare enough that
their discovery is noteworthy. Recent attention has been given to aperiodic conformal tilings generated by a
finite set of subdivision rules [4, 5]. Escher is our tool for exploring and creating such tilings.

Start with a finite set of tiles, called prototiles, and for each prototile a subivision rule that shows how to
subdivide the prototile into smaller copies (all scaled by the same scale factor 4). Consider the subdivision
tiling called the chair tiling, shown in Figure 1. By recursively applying the subdivision rules for each
prototile, we obtain a heirarchical tiling.

Figure 1: An initial prototile (left) followed by four levels of recursive subdivision. The left-most two figures
display the subdivision rule, which is recursively applied.

What if we completely forget the geometry of a tiling and instead remember only its combinatorics?
A tile becomes an n-cycle of vertices surrounding an abstract face in a planar graph and the subdivision
rules define how to refine an n-cycle of some tile type by subdividing combinatorially into further vertices,
edges, and faces. This is purely combinatorial-there are no geometric objects present. Note that there is a
bit of a subtlety here. In a geometric tiling, all tiles of the same type are geometrically similar. So too in a
combinatorial tiling, all tiles must be combinatorially similar. Looking closely at the graph of the edges of
the first subdivision of the chair tiling we see that the six cornered chair is subdivided into three chairs each of
which (considered as a planar graph) have 6 vertices, but one which must have midpoint vertices introduced
along two of its edges creating an 8-cycle. In order to make this subdivision rule purely combinatorial, we

455



Bowers and Lawson

must either have two tile types, one a 6-cycle and one an 8-cycle, or simply start by imagining each of the long
sides of the chair as subdivided by a midpoint vertex. Combinatorially this makes all of our chairs 8-cycles,
and thus we can define the combinatorial version of the rule with only one tile type.

(a) (b)

Figure 2: Chair tilings where we “forgot” the geometry before subdividing. (a) A star circle packing of the
level-4 tiling (left) and its highlighted aggregate tiles two levels up (right). The black edges are

the edges of the tiling. The red edges are the additional edges introduced to triangulate each face
before computing a circle packing to obtain a drawing. The circles are shown lightly in green.

(b) A Tutte embedding of the level-3 tiling (left) and its highlighted aggregate tiles two levels up.

We now apply the combinatorial subdivision rules recursively to obtain a purely combinatorial object in
the form of a planar graph (which has abstract vertices, edges, and faces, but no geometry). We now want to
obtain a geometric tiling from our combinatorial object. Two techniques are implemented in Escher. The first
is a star-subdivision circle packing drawing of the tiling. Given the planar graph G = (V, E, F') whose faces
are all triangles (except the outer face), a circle packing is a pattern of interior disjoint circles indexed by the
vertex set (C,, for v € V) such that whenever uv € E, the circles C,, and C,, are tangent. According to a variant
of the Koebe-Andre’ev-Thurston theorem, there always exists a circle packing for G in which all circles lie
on the interior of the unit disk and the boundary vertices of G (those that border the outer face) are internally
tangent to the boundary of the unit disk (and this packing is unique up to Mdbius transformations that fix the
unit disk)!. Escher uses the algorithm from [3] to compute this packing. The first step is to subdivide each
tile into triangles by introducing a new “star” vertex on the tile’s interior and adding edges between this vertex
and each of the tile’s boundary vertices. The resulting graph is a triangulation and Escher then computes
a circle packing on the interior of the unit disk for this triangulation. The second graph drawing technique
implemented in Escher is a Tutte embedding (as described in [7]). Here we place all of the vertices of the
outer face of the tiling equidistant along the unit circle. Since this places the vertices of the outer face into
convex position, there is a Tutte embedding of the tiling, which is a planar embedding of the tiling in which
each interior vertex is the average (barycenter) of its neighbors. Examples of each are shown in Figure 2.

Now for a surprise! Let us select a particular level of the recursive process and for each tile at that level
choose a unique tile color at that recursive level. From there we continue to recursively apply subdivisions,
except that each tile produced by a subdivision rule now inherits its color from the parent tile whose subdivision
created it. This allows us to view aggregate tiles, or all the tiles who have a common ancestor. The union
of these tiles with a common ancestor at level n is an n-level aggregate tile. Figure 2 show aggregate tiles
for both the star circle packing drawings and Tutte drawings of our chair tiling. The chairs have returned!
Here the reader may wish to reflect on exactly how surprising this is. In both cases we have forgotten the
geometry and retained only the combinatorics of the chair tiling. A “chair” is just an 8-cycle. When we draw
it with a graph drawing technique, we should not expect to see chairs at all, and in fact we do not. However,

IThis is actually a circle packing of the hyperbolic plane and drawn in the Poincaré model, which is why the star vertices in
figure 2a appear to be off center—they are at the hyperbolic centers of the circles.

456



Escher: An Engine for Exploring Hierarchical Combinatorial Tilings

when we inspect the aggregate tiles, somehow the chair-ness of the figure reappears—the combinatorics of
the tiling are coding for its geometry! It turns out that this is no fluke of the chair tiling. In fact, Kenyon
and Stephenson recently showed in [6] that this surprising result, at least in the case of star circle packing
drawings, generalizes—combinatorial subdivision tilings somehow encode geometry into their combinatorics
and the aggregate tiles approach their Euclidean tiles geometrically. (The reader may wish to note here that
why the same showed up for the Tutte embedding is an intriguing open problem.)

Using Escher

We designed Escher to aid in the discovery of new tilings and the exploration of their mathematical properties.
Escher has two components—a Python library for defining and computing subdivisions that returns the
subdivision in a structure in which additional properties may be explored programmatically, and a simple
language that can be used to generate tilings at different recursive levels and produce drawings of them.

A sketch of the Twisted Pentagonal Tiling: Drawin}gls from
Escher

A [J A b B

The Escher Language definition of the
Twisted Pentagonal Tiling:
prototile pent

Recursion Depth 2

let pent be (A, B, C, D, E)

create vertices for pent {
a and b splits AB
c and d splits BC
e and f splits CD
g and h splits DE
i and j splits EA
new vertex k

¥

create suhtiles for pent {
new subtile (A, a, b,

j) of type pent
b) of type pent Q
of type pent ) %9, “!'
f) of type pent Q

h) of type pent Recursion Depth 4

new subtile (B, c,
new subtile (C, e,
new subtile (D, g,
new subtile (E, i,

T oo
ARXXAX
o

Recursion Depth 4
Aggregate Tiles at Depth 3

Figure 3: An example of taking a tiling description of the twisted pentagonal tiling from drawing to tiling.

The goal of the Escher engine is to match closely the way a mathematician explains a subdivision rule
using a chalkboard. Consider the chair tiling. To explain the tiling rule for the chair tiling, one would first
draw the prototile, and then draw its subdivision into smaller tiles. Escher begins with the same drawing of a
subdivision of each prototile. In the subdivision there are three distinguishable types of vertices—vertices that
are part of the original prototile, vertices that are obtained by splitting an edge of the original prototile into
two or more edges (thus introducing new vertices along the original edge), or vertices that are introduced on
the interior of the tile. The user provides names for each of the vertices, both in the initial tile definition and
in the subdivision rule.

A prototile object is created for each prototile, which is simply a list of its vertex names. These may
optionally be associated with geometric points if the tiling is a geometric tiling, but may be omitted if defining
a purely combinatorial tiling. The subdivision rule is specified by: (1) defining which original edges should
be split (and into how many sections) and what names to give the new vertices; )(2) giving names to any
additional vertices needed on the interior of the prototile; and (3) telling the system which tiles to subdivide
into, which requires specifying both type and vertex cycle. An example is shown in Figure 3. Escher then
applies the tiling rules recursively to the desired depth given by the user. The output is a modification of

457



Bowers and Lawson

a doubly connected edge list (DCEL) data structure that additionally stores the recursive tile hierarchy and
allows for efficient computation of a variety of tiling properties—for instance, aggregating tiles into their
parent super-tiles is very efficient, as is computing properties of interest to the tiling community like collared
tiles (tiles labeled by the types of their neighbors). The Escher engine is available open source as part of the
KoebePy geometry processing library [1].

In addition to the the Python library we have developed a simple language for defining tilings that mimics
the programmatic creation of a tiling in Python, but allows the user to define and view it without Python. The
user writes a text file describing a tiling and runs the tiler program on it to “compile” a drawing of the tiling
as an SVG file. Various parts of the figure are included in different groups so that a standard SVG editor can
be used to quickly modify the look of the tiling. This part of the engine is currently at the testing phase and
is due to be released publicly in the summer of 2024.

Summary and Conclusions

In this paper we have introduced Escher, our engine for programmatically exploring combinatorial hierarchical
subdivision tilings. A longer form explanation of the motivations and mathematics involved can be found
at [2]. Currently the Escher language only has provisions for producing drawings of tilings, while more
sophisticated computation must be done programmatically in Python. In the future we plan to provide a
variety of additional tools for tiling researchers, including things like computing and visualizing the entire
collared tile set of a tiling within the Escher language itself. The system is also currently limited by the
exponential nature of the recursive subdivision rules and we’re realistically only able to produce tilings down
to a depth of about seven. As future work we plan to explore approximation schemes to allow us to compute
parts of a tiling and its drawing at much greater depth (without having to globally compute the entire tiling).

Acknowledgements

Special thanks to Angelo Luna and Nicole Maguire who developed an earlier proof-of-concept for Escher as
part of an independent study at James Madison University.

References
[1] KoebePy Geometry Processing Library. https://github.com/johncbowers/koebepy. Accessed:
2024-04-29.

[2] J. C. Bowers. Combinatorial tilings from finite subdivision rules.
https://theobtusegeometer.com/2020/04/08/tilings-from-finite-subdivision-rules-in-koebepy/.
Accessed: 2024-04-29.

[3] P. Bowers and K. Stephenson. “A “regular” pentagonal tiling of the plane.” Conformal Geometry and
Dynamics of the American Mathematical Society, vol. 1, no. 5, 1997, pp. 58-86.

[4] P. L. Bowers and K. Stephenson. “Conformal tilings I: foundations, theory, and practice.” Conform.
Geom. Dyn., vol. 21, no. 1, 2017, pp. 1-63.

[5] P. L. Bowers and K. Stephenson. “Conformal tilings II: Local isomorphism, hierarchy, and conformal
type.” Conform. Geom. Dyn, vol. 23, no. 4, 2019, pp. 52-104.

[6] R. Kenyon and K. Stephenson. “Shape convergence for aggregate tiles in conformal tilings.”
Proceedings of the American Mathematical Society, vol. 147, no. 10, 2019, pp. 4275-4287.

[7] W.T. Tutte. “How to draw a graph.” Proceedings of the London Mathematical Society, vol. 3, no. 1,
1963, pp. 743-767.

458


https://github.com/johncbowers/koebepy
https://theobtusegeometer.com/2020/04/08/tilings-from-finite-subdivision-rules-in-koebepy/

