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Abstract

We explore the relationship between a knitted yarn network and its “scaffold surface” to address topological, geometric,
and mechanical questions about knit textile behavior. The scaffold structure allows for a mean-field understanding
of yarn mechanics, reducing the need to simulate direct yarn-to-yarn contacts by focusing on the geometry of the
scaffold surface as an intermediary object. The scaffold structure as part of the Schwarz diamond minimal surface
further offers insight into the geometric tendencies of knit and purl stitches, as well as their interfaces.

Introduction

Whether handmade or industrially produced, weft-knit fabric is created by pulling a series of yarn loops
through one another in an ordered rectangular array. The resulting material showcases complex geometric
and mechanical behavior, and swatches of fabric made from the same type of yarn may boast vastly different
properties depending on the stitch pattern. This allows knit patterns to be programmed to generate specific
variations of curvature or metric [1].

Although knit loops are not typically knotted in the strict mathematical sense, their local entanglements
are prescribed during the fabric’s creation by a stitch pattern that dictates the movement of the needles
manipulating the yarn, resulting in topological arrangement that cannot be modified later on without breaking
the yarn. As the functionality of the resulting fabric can change the yarn geometry but not the topology,
directly modelling yarns in the fabric requires computing optimal yarn geometry subject to a number of
topological constraints on the order of the total number of stitches. For computational efficiency, it would be
greatly beneficial to reduce the space of possible yarn paths in a manner that naturally enforces the topology
of the knit structure.

Knitting on a Helicoid Scaffold

A serendipitous property of the basic knit pattern is its close relationship with the single-layer helicoid
scaffold (Figure 1(a)) [2]. The scaffold surface is created by connecting alternating left- and right-handed
helicoids in a single layer, and it separates space into two distinct regions. The helicoid scaffold surface is
equivalent to a slice of the Schwarz diamond surface, a minimal surface with cubic symmetry that tiles 3D
space (Figure 1(b)) [3, 4].

The helicoid surface fully separates the yarns of a knit swatch that has been pulled taut, and the regions
that would contain necessary yarn-to-yarn contacts occur near the axes of the helicoids. At all points along
its path, the yarn lies along the surface of the scaffold, offset slightly to one side or another. The scaffold
thus offers an approximate, two-dimensional parameterization of the yarn path that sidesteps the problem of
enforcing almost all local topological constraints.
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(a) (b)

Figure 1: Structure of the helicoid scaffold: (a) the layout of knit stitches on the helicoid scaffold, which
separates yarns of different rows (adapted from [2]); (b) the helicoid scaffold is a layer in the

(1,−1, 0) plane (non-uniquely) of the Schwarz diamond minimal surface, which can be visualized
as a square checkerboard pattern of helicoids.

Perhaps surprisingly, not only does the helicoid scaffold encode the topological entanglements of the
yarn segments twisting around each other, but it also seems to provide insight into the geometry of the yarn
path as well. Wadekar [5] showed that geodesic paths following the stitch pattern along the helicoid scaffold
are in fact the same paths that minimize the total squared space-curvature of the stitch subject to endpoint
(and endpoint tangent) constraints, without any constraint to lie along the helicoid surface. In general, if the
yarn is assumed to be under tension, then yarn paths constrained to the surface of the helicoid scaffold will
form geodesics on the scaffold surface, and optimization of the fabric’s elastic energy can be parameterized
over small deformations of the scaffold itself.

Trading Hands and Switching Planes

Although a knit structure is defined by its twisted yarn crossings and the helicoid scaffold can be viewed as
a superposition of individual helicoids, the knit structure is not a chiral material on the whole. However, it
does impose a preferred “knitting direction”, shown vertically in Figure 2(a) and known in practice as the
wale direction; the horizontal direction is known as the course direction. Although a bulk section of pure knit
stitches appears to have up-down symmetry, boundaries or more complex stitches such as transfer stitches
will break this symmetry.

(a) (b)

Figure 2: (a) A schematic showing the crossings of nine knit stitches, loops that have been pulled from
back-to-front; (b) a schematic of nine purl stitches, the mirror image of knit stitches with loops

that have been pulled from front-to-back.

A purl stitch (Figure 2(b)) is the mirror-image of a knit stitch, where a loop of yarn is pulled from
front-to-back instead of back-to-front. As a result, a purl stitch requires reversing the positions of left- and
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right-handed helicoids on its portion of the scaffold. However, because the scaffold surface is created by a
checkerboard pattern of left- and right-handed helicoids, switching from a knit to a purl stitch (or vice-versa)
requires changing the plane of the fabric on the helicoid scaffold (Figure 3).

(a) (b) (c) (d)

Figure 3: (a-b) Horizontal transition from a knit loop (left) next to a purl loop (right) on the helicoid
scaffold, requiring a change of planes between the two loops. Surrounding yarns are omitted for
clarity. (a) shows a natural configuration requiring less overall yarn and bending energy. (c-d)

Vertical transition from two knit stitches (bottom) to a purl stitch (top). (c) shows the
configuration requiring less yarn and less bending energy.

The change of plane required to join knit and purl sections of fabric causes regions of different stitches
to be offset from each other slightly (Figure 3, Figure 4(a)). In practice, one finds that joining a section of
knits to a section of purls via a vertical boundary results in the purl section getting pushed backward into the
plane of the fabric while the knit section is pushed forward, as shown in Figure 3(a). However, when joining
sections of knits and purls via a horizontal boundary, the opposite is true (Figure 3(c)). Topologically, the
knitted structure should be agnostic toward the direction of this plane change, but in practice changing planes
to one direction is always favored in order to minimize both the extra yarn length and bending energy required
to do so (Figure 3(b,d)).

One consequence of these interface-dependent planar offsets is that a “four corner” pattern of knits and
purls naturally develops spiral features at their junction (Figure 4). Although none of the stitches themselves
are chiral, their alignment and interactions result in a chiral feature emerging from the interface of knits and
purls.

(a) (b)

Figure 4: (a) Vertical and horizontal interfaces between knit (top-left and bottom-right) and purl (top-right
and bottom-left) sections of a fabric are offset from one another perpendicular to the plane of the
fabric, where the offset direction is dependent on the direction of the interface. These interfaces
result in a chiral structure at the center of the four regions. (b) A crossing diagram of the chiral

feature shown in (a).
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Generating Curvature

Another manifest feature of knit materials is their propensity to curl, especially near the edges of the fabric
or at interfaces between knit and purl sections (Figure 4(a)) [1]. These curvatures arise because sections of
yarn are forced to bend around each other by the knit topology, and can be understood qualitatively from the
geometry of the helicoid scaffold.

Because yarn geometry is physically enforced by yarn-to-yarn interactions, we investigate the geometric
structure of the scaffold surface near these contacts. From Figure 1(a) we note that the scaffold corresponding
to pure knit stitches has saddle-like regions oriented in the same way at every yarn intersection, on average
curved positively in the course direction and negatively in the wale direction. This curvature represents the
action of two yarn segments forced to bend around each other. However, the flexural stiffness of each yarn
segment generates a bending moment in the exact opposite direction; the fabric as a whole then energetically
prefers a two-dimensional curvature that is opposite to the curvature of the helicoid scaffold at that point.

This results in a tendency for fabrics made of knit stitches to curl forward at their horizontal edges and
backward at their vertical edges. For regions made with purl stitches, all curvatures are reversed; both can be
clearly seen in Figure 4(a). The curling behavior of knits can therefore be read off directly from the geometry
of the helicoid scaffold near yarn-to-yarn contacts.

Summary & Conclusions

The helicoid scaffold offers a unique perspective on the behavior of knit textiles and enforces local topological
constraints encoding the yarn crossings dictated at manufacture. Additionally, the extension of the helicoid
scaffold to the larger Schwarz diamond minimal surface suggests natural geometric features at the junction
of knit and purl stitches.
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