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Abstract  

This paper presents the construction of an isogonal tiling from an edge coloring of a uniform tiling of the hyperbolic 

plane. In addition, it also discusses how the isogonal tiling can be transformed into a hyperbolic artwork by using 

motifs with appropriate symmetry properties as the edges of the tiling. 

 

Introduction 

In tiling theory, the study of tilings with vertex transitivity properties has always been of interest (see 

[3][5][8] and references herein). These tilings have been used for their applications in science, such as to 

model various chemical structures. For example, a patch of a two-coloring of the hexagonal tiling in Figure 

1(a) can be used to model benzene [3]. In art, these tilings may also be used as a basis for constructing 

aesthetically pleasing colored patterns. The regular (55) tiling of the hyperbolic plane (ℍ2) with symmetry 

group *552 for instance, was used to render a hyperbolic pattern presented in Figure 1(b) using as motifs 

the textile designs from the Yakans, one of the indigenous communities in the Philippines [6]. 

 

  
(a) (b) 

Figure 1: (a) A patch of a two-coloring of a hexagonal tiling used to model benzene; and (b) a hyperbolic 

pattern with motifs inspired by the indigenous designs of the Yakan tribe from Mindanao, Philippines. 

 

In this paper, we discuss the construction of isogonal tilings of ℍ2. Isogonal tilings are tilings with vertices 

forming one orbit under the action of their respective symmetry groups [9]. This means that in an isogonal 

tiling, there is always a symmetry of the tiling that will send one vertex to another.  In [8], a list of Euclidean 

isogonal tilings was derived using the concept of edge adjacency symbols. There is existing literature on 

hyperbolic uniform tilings [5][7] which are isogonal tilings consisting solely of regular polygons, but not 

much has been said on a systematic construction of isogonal tilings of ℍ2 in general. In this work, an 

approach to construct an isogonal tiling of ℍ2 from a uniform tiling will be presented, by considering its 

uniform edge coloring. It can be recalled that an edge coloring of a uniform tiling is uniform if for any two 

vertices of the tiling, there is a symmetry of the tiling that sends one vertex to the other and preserves the 

colors of the edges [9]. 
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Constructing Isogonal Tilings from Uniform Edge Colorings 

We begin by first considering a uniform edge coloring of a uniform tiling. Let 𝒯 be an uncolored uniform 

tiling with symmetry group 𝐺. Choose a subgroup 𝐻 of 𝐺 such that 𝐻 forms one orbit of vertices of 𝒯. 

Suppose 𝐻 forms 𝑛 orbits of edges in 𝒯, that is, if 𝐸 is the set consisting of edges of 𝒯, 𝐸 can be partitioned 

as 𝐸 =  𝐻𝑒1 ∪ 𝐻𝑒2 ∪ ⋯ ∪ 𝐻𝑒𝑛 where we pick 𝑒1, 𝑒2, … 𝑒𝑛 as representatives from each orbit of edges. 

Assigning distinct colors to each 𝐻𝑒𝑗, 𝑗 = 1, … 𝑛, we obtain an edge-𝑛-coloring of 𝒯. Since 𝐻 preserves 

the colors of the edges, the edge-𝑛-coloring is uniform. 

Now, to construct an isogonal tiling 𝒯∗ from the uniform edge coloring of 𝒯, a new set of edges 

𝑒1
∗, 𝑒2

∗, ⋯ , 𝑒𝑛
∗  is introduced to replace 𝑒1, 𝑒2, … , 𝑒𝑛, respectively. There are four possibilities for 𝑒𝑗

∗  

(𝑗 = 1, … 𝑛)  depending on its finite group 𝐹 of symmetries in the group 𝐺. The group 𝐹 is either of type 

𝐶𝑛 (cyclic group of order 𝑛) or 𝐷𝑛 (dihedral group of order 2𝑛).  Figure 2(a)-2(d) shows the four 

possibilities for 𝑒𝑗
∗ with various symmetry types. Figure 2(a) type 𝐶1: 𝐹 is generated by the identity 

isometry, Figure 2(b) type 𝐶2: 𝐹 is generated by a 180° rotation with center 𝐶, Figure 2(c) type 𝐷1: 
generated by a reflection with axis 𝑙, and Figure 2(d) type 𝐷2: generated by two reflections with axes 

perpendicular to each other, one of which passes through the edge. It is important to note that we can replace 

the edge 𝑒𝑗 with one of the four possibilities of 𝑒𝑗
∗, provided the symmetries of 𝑒𝑗 in 𝐻 is contained in 𝐹.  

    

(a) (b) (c) (d) 

Figure 2: Edges with finite symmetry group types (a) 𝐶1; (b) 𝐶2; (c) 𝐷1; and (d) 𝐷2. 

 

The tiling 𝒯∗ is formed by applying 𝐻 to the newly constructed edges 𝑒1
∗, 𝑒2

∗, ⋯ , 𝑒𝑛
∗  .That is,  𝒯∗ = 𝐻𝑒1

∗ ∪
𝐻𝑒2

∗ ∪ ⋯ ∪ 𝐻𝑒𝑛
∗ . The tiling 𝒯∗ is a tiling whose vertices are the vertices of 𝒯, the edges are the union of 

orbits of the 𝑒𝑗
∗’s under 𝐻 and the tiles are the regions bounded by these edges. Its symmetry group is 𝐻.  

Since 𝐻 is transitive on the vertices of 𝒯, it follows that 𝒯∗ is an isogonal tiling.  

To illustrate the construction, consider the uniform tiling 𝒯 ≔ (46) of ℍ2, a tiling with 6 regular  

4-gons incident to each vertex. Its symmetry group is 𝐺 = 〈𝑃, 𝑄, 𝑅〉 ≅∗ 642 generated by reflections 𝑃, 𝑄, 

and 𝑅 with axes shown in Figure 3(a). We consider a subgroup 𝐻 = 〈𝑃, 𝑅, 𝑄𝑃𝑄, 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄〉 ≅ 2∗222 

of 𝐺 generated by reflections 𝑃, 𝑅, and 𝑄𝑃𝑄, and the 180° rotation 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 with axes and center, 

respectively, shown in Figure 3(b), where 𝐻 forms one orbit of vertices of 𝒯. Moreover, 𝐻 forms four orbits 

of edges of 𝒯 namely 𝐻𝑒1, 𝐻𝑒2, 𝐻𝑒3 and 𝐻𝑒4. Assigning the colors red, blue, green, and orange, 

respectively to 𝐻𝑒1, 𝐻𝑒2, 𝐻𝑒3 and 𝐻𝑒4, we obtain the uniform edge coloring in Figure 3(b). 

We now construct an isogonal tiling from this uniform edge coloring of 𝒯. To do this, we introduce a 

new set of edges 𝑒1
∗, 𝑒2

∗, … , 𝑒4
∗. We explain the construction in detail. We use the straight edge 𝑒1

∗ of 

symmetry group in 𝐺 generated by reflections 𝑃 and 𝑅. It can be checked that the symmetry group of 𝑒1 in 

𝐻 is also generated by 𝑃 and 𝑅. The edge 𝑒2
∗ may be an edge of symmetry group in 𝐺 generated by the 

reflection 𝑄𝑃𝑄 or generated by perpendicular reflections 𝑄𝑃𝑄 and 𝑄𝑅𝑄. Note that the symmetry group of 

𝑒2 in 𝐻 is generated by 𝑄𝑃𝑄. We choose 𝑒2
∗ of symmetry group generated by 𝑄𝑃𝑄. The edge 𝑒3

∗ may be an 

edge of symmetry group in 𝐺 generated by the 180° rotation 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 or generated by the 180° rotation 

𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 and reflection 𝑄𝑅𝑄𝑃𝑄𝑅𝑄. Observe that the symmetry group of 𝑒3 in 𝐻 is generated by 

𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄. We choose 𝑒3
∗ of symmetry group generated by 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄. Lastly, we use a straight edge 

𝑒4
∗ of symmetry group in 𝐺 generated by perpendicular reflections 𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2. Observe  

that the symmetry group of 𝑒4 in 𝐻 is also generated by 𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2. We now form the  

isogonal tiling 𝒯1
∗ by forming the union of the orbits of these new edges under the subgroup 𝐻. That is, 

𝒯1
∗ = 𝐻𝑒1

∗ ∪ 𝐻𝑒2
∗ ∪ 𝐻𝑒3

∗ ∪ 𝐻𝑒4
∗ (see Figure 3(c)). 
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Another isogonal tiling may be formed by choosing a different set of edges for 𝑒1
∗, 𝑒2

∗, 𝑒3
∗, and 𝑒4

∗.  

The isogonal tiling 𝒯2
∗ in Figure 3(d) is formed by considering 𝐻𝑒1

∗ ∪ 𝐻𝑒2
∗ ∪ 𝐻𝑒3

∗ ∪ 𝐻𝑒4
∗ where the 

symmetry group of 𝑒1
∗ in 𝐺 is generated by the reflections 𝑃 and 𝑅, the symmetry group of 𝑒2

∗ in 𝐺 is 

generated by the reflection 𝑄𝑃𝑄, the symmetry group of 𝑒3
∗ in 𝐺 is generated by the 180° rotation 

𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 and reflection 𝑄𝑅𝑄𝑃𝑄𝑅𝑄, and the symmetry group of 𝑒4
∗ in 𝐺 is generated by the 

perpendicular reflections 𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2.  

 

    

(a) (b) (c) (d) 

Figure 3: (a) The hyperbolic tiling 𝒯 with symmetry group 𝐺 generated by reflections 𝑃, 𝑄, 𝑅; (b) a uniform 

edge-4-coloring of 𝒯, generators 𝑃, 𝑅, 𝑄𝑃𝑄, 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 of 𝐻 and axes of reflections 𝑄𝑅𝑄, 

 𝑄𝑅𝑄𝑃𝑄𝑅𝑄, (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2; and (c-d) isogonal tilings 𝒯1
∗ and 𝒯2

∗ with symmetry group 𝐻. 

 

Constructing Patterns from Isogonal Tilings 

An isogonal tiling may be transformed to arrive at a pattern with varying motifs, having the same symmetry 

properties as the tiling. To illustrate this, consider the hyperbolic isogonal tiling 𝒯1
∗ shown in Figure 3(c). 

We consider the symmetry group in 𝐺 of each edge 𝑒𝑗
∗, 𝑗 = 1, … ,4  in 𝒯1

∗ and construct a motif with the 

same symmetry group in 𝐺 as that of 𝑒𝑗
∗. For example, the edge 𝑒1

∗ of symmetry group in 𝐺 generated by 

two reflections 𝑃 and 𝑅 is replaced by a blue butterfly of symmetry group in 𝐺 also generated by 𝑃 and 𝑅.  

The rest of the edges are replaced as follows: The edge 𝑒2
∗ of symmetry group in 𝐺 generated by the 

reflection 𝑄𝑃𝑄 by a green dragonfly of symmetry group in 𝐺 generated by the reflection 𝑄𝑃𝑄; the edge 𝑒3
∗ 

of symmetry group in 𝐺 generated by the 180° rotation 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 by a yellow flower of symmetry group 

generated by 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄;  and the edge 𝑒4
∗ of symmetry group in 𝐺 generated by perpendicular reflections 

𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2 by the pink butterfly of symmetry group in 𝐺 generated by perpendicular 

reflections 𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2. The resulting pattern is shown in Figure 4(a) with symmetry 

group 2∗222 and having four different classes of motifs corresponding to the four orbits of edges in the 

original tiling 𝒯1
∗.  

Similarly, Figure 4(b) and Figure 4(c) show patterns corresponding to the isogonal tiling 𝒯2
∗. The 

motifs used in Figure 4(b) are inspired by the fabric designs of the Northern Kankana-ey from Northern 

Luzon in the Philippines [2]. The motifs used to replace 𝑒1
∗, of symmetry group in 𝐺 generated by two 

reflections 𝑃 and 𝑅, and 𝑒3
∗ of symmetry group in 𝐺 generated by the 180° rotation 𝑄𝑅𝑄𝑅𝑃𝑄𝑅𝑄 and 

reflection (𝑄𝑅)3𝑄, are known as matmata which represents rice grains and the eyes, as they admire rice as 

an all-seeing god that gives their body the nourishment that it needs. The motifs used to replace 𝑒2
∗, of 

symmetry group in 𝐺 generated by the reflection 𝑄𝑃𝑄, and 𝑒4
∗ of symmetry group in 𝐺 generated by the 

perpendicular reflections 𝑅 and (𝑄𝑅)2𝑄𝑃𝑄(𝑅𝑄)2, are called tiktiko, which shows distinguishing zigzag 

designs that symbolize the mountains and forests where their rice fields are located. These two types of 

motifs imply wealth and abundance for the Northern Kankana-ey.  

Moreover, Figure 4(c) shows a hyperbolic pattern with motifs that are inspired by the indigenous 

designs of the Yakan tribe in the Philippines [4]. The designs of the Yakans usually include colorful motifs 

to showcase bravery in battle, joy in birth, and marriage rituals. The motifs used to replace 𝑒1
∗, 𝑒2

∗, 𝑒3
∗ and 𝑒4

∗ 
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consist of colorful diamonds which is a traditional motif used in Yakan textiles. These motifs also show 

symmetries which satisfy the symmetry group condition mentioned in the previous section.  

   
(a) (b) (c) 

Figure 4: Hyperbolic isogonal tiling using different motifs as edges: (a) flowers and butterflies; motifs 

from indigenous designs of the (b) Northern Kankana-ey; and (c) Yakan tribe in the Philippines. 

 

Conclusion 

The connection of uniform edge colorings and isogonal tilings may lead to the construction of other types 

of tilings such as 𝑘-isogonal tilings from edge colorings of 𝑘-uniform tilings of the Euclidean plane, 

hyperbolic plane and 2-sphere. The problem of how to efficiently construct uniform edge-𝑛-colorings has 

been addressed in response to the problem posed by Grünbaum and Shephard in [9] and is discussed in 

detail in [1]. Consequently, various aesthetically pleasing patterns may also arise depending on the 

underlying isogonal or 𝑘-isogonal tiling and the set of motifs that will be used.  
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