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Abstract
We introduce several varieties of zigzag tiles and describe how to use them to make mosaics and single-line drawings.

Introduction

The lefthand side of Figure 1 displays a zigzag tile: a white square tile decorated with a black zigzag path.
When we “read” a zigzag tile from left to right, we see that its zigzag path visits points 1 through 5 in
succession. The positions of points 1, 3, and 5 are fixed; their (x, y) coordinates are (−0.5, 0), (0, 0), and
(0.5, 0), respectively. The positions of points 2 and 4, which are forced to remain on the light gray vertical
“sliders,” are not fixed but constrained: their (x, y) coordinates are (−0.25, s) and (0.25,−s), respectively,
where 0 ≤ s ≤ 0.5. Note that when s = 0, points 2 and 4 lie on the horizontal bisector of the tile, and the tile
ends up being as bright as it can possibly be (due to its path being as short as possible). And when s = 0.5,
point 2 lies on the top edge of the tile, point 4 lies on the bottom edge, and the tile ends up being as dark as
we allow it to be (due to its path being as long as we allow it to be).
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Figure 1: (left) A zigzag tile, and (right) a 49 × 49 zigzag mosaic made out of 492 = 2401 zigzag tiles.

The righthand side of Figure 1 displays a zigzag mosaic, a two-dimensional array of zigzag tiles. For
each row i from 1 to 49 and each column j from 1 to 49, we needed to determine s∗i, j , the ideal s-value for
tile (i, j), the zigzag tile in the row-i-column- j entry of the array. Our goal was to produce a mosaic that
would closely resemble a section of Sandro Botticelli’s Birth of Venus [4] when viewed from a distance. We
accomplished this goal by solving a total of 492 = 2401 single-variable optimization problems.
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Using Single-Variable Calculus to Select the Best Zigzag Tile

Let L(s) denote the length of a zigzag tile’s path. By using the Euclidean distance formula and rules for
differentiation taught in a first-semester calculus course, it is straightforward to show that

L(s) =
√

1 + 16s2 , L ′(s) =
16s

√
1 + 16s2

, and L ′′(s) =
16

(1 + 16s2)3/2
.

Although L(s) is continuous and differentiable for all values of s, we restrict our attention to s-values between
0 and smax = 0.5. (Later on, we will demonstrate the effect of increasing smax.)

Now suppose that we want a tile’s zigzag path to have length λ. Because we know that L(0) = 1,
L(0.5) =

√
5, and L(s) is continuous and strictly increasing on (0,∞), we can conclude that if the desired

length λ ∈ [1,
√

5] then there is a unique s-value that produces that length. Moreover, we can obtain s∗, the
ideal s-value, by setting L(s) equal to λ and solving for s. Doing so yields

s∗ =
1
4

√
λ2 − 1 . (1)

If λ ∈ [0, 1) then the optimal s-value is s∗ = 0. If λ ∈ (
√

5,∞) then the optimal s-value is s∗ = 0.5.
A second, equivalent way of computing s∗ involves using single-variable calculus to minimize the

squared error function f (s) = (L(s)−λ)2. By using rules for differentiation taught in a first-semester calculus
course, we obtain

f ′(s) = 2(L(s) − λ)L ′(s) and f ′′(s) = 2(L ′(s))2 + 2(L(s) − λ)L ′′(s).

It is clear that if λ ≤ 1, then s∗ = 0. In addition, if 1 < λ ≤
√

5 then s = 0 cannot be optimal, and the only
stationary point for f will be the unique s-value for which L(s) = λ, the value of s∗ shown in equation (1).
Finally, f ′′(s∗) > 0, which tells us that f is convex at s∗ and that s∗ is the global minimizer of f over [1,

√
5].

Figure 2 displays a 5 × 25 zigzag mosaic of a gradient. To make this mosaic, we set λi, j , the desired
length of tile (i, j)’s zigzag path, equal to λi, j = 0.95 + 0.05 j for all i, j satisfying 1 ≤ i ≤ 5 and 1 ≤ j ≤ 25,
and then we used equation (1) to obtain the s∗i, j’s.

Figure 2: A 5 × 25 zigzag mosaic made out of 5 · 25 = 125 zigzag tiles.

To make a mosaic like the Venus mosaic shown on the righthand side of Figure 1, we need to convert
the target image’s grayscale values into desired lengths. If bi, j ∈ [0, 1] denotes the brightness of pixel (i, j),
the row-i-column- j pixel of the target image, and 0 stands for black, 1 stands for white, and intermediate
values stand for various shades of gray, then we can use the following linear equation to compute the desired
lengths:

λi, j =
√

5 + (1 −
√

5)bi, j . (2)

Equation (2) ensures that λi, j = 1 (the shortest possible length) when bi, j = 1 and that λi, j =
√

5 (the longest
length we allow ourselves to use) when bi, j = 0. If we want to use a smax-value other than 0.5, we will have
λmax =

√
1 + 16s2

max and λi, j = λmax + (1 − λmax)bi, j .
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Figure 3 demonstrates what happens when we increase smax from 0.5 to 0.7 and then to 0.9. If we allow
our zigzag tiles to have longer zigzag paths, we will gain the ability to produce mosaics that have higher
contrast. But when smax exceeds 0.5, we may find that some of our tiles’ zigzag paths extend outside of their
square frames. This can make neighboring path segments (on a tile and on the tiles above or below this tile)
difficult to distinguish and, in addition, can create optical effects that may make the resulting mosaics more
difficult to process by our visual systems, particularly when we view them from up close.

Figure 3: Three 29 × 29 zigzag mosaics with (left) smax = 0.5, (center) smax = 0.7, and (right) smax = 0.9.

Converting Zigzag Mosaics into Single-Line Drawings

Computationally speaking, it is very easy to make a zigzag mosaic. (If the target image is m × n, then the
total amount of work required is O(mn).) And it is even easier to transform a zigzag mosaic into a single-line
drawing. All we have to do is connect the first row of zigzag paths to the second row on the mosaic’s right
edge, the second row to the third row on the left edge, and continue in this fashion, alternating between
making connectons on the right and making them on the left. If the mosaic has an odd number of rows, it
will be possible to trace the resulting single-line drawing from the top left corner to the bottom right corner,
as shown in Figure 4. If the mosaic has an even number of rows, the ending point will be in the bottom left
corner.

Figure 4: A single-line drawing based on a 5 × 25 zigzag mosaic.

This method for making single-line drawings is much faster than TSP Art [2,5] and the tile-based
approach that was recently introduced by Bosch and Snyder [3]. Another advantage is that zigzag-mosaic
single-line drawings are extremely easy to trace by hand or eye. During the review process a helpful
referee pointed out that our zigzag tiles were previously studied by Ahmed and Deussen [1], who did not
discuss connections with calculus. Ahmed and Deussen refer to their work as amplitude-modulated line-
based halftoning, which would put both their work and ours in the same family as Claude Mellan’s famous
“line-thickness-modulated” spiral-shaped engraving The Face of Christ on St. Veronica’s Cloth [6] from 1649.
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Double Zigzag Mosaics and Single-Line Drawings

The lefthand side of Figure 5 displays a double zigzag tile: a white square tile decorated with two black
zigzag paths, one horizontal and one vertical. Each path passes through the center of the tile. The horizontal
path connects the midpoints of the tile’s left and right edges, while the vertical path connects the midpoints of
the tile’s bottom and top edges. On each path, points 1, 3, and 5 are fixed, while points 2 and 4 are confined to
their sliders. On the horizontal path, points 2 and 4 have coordinates (−0.25, s) and (0.25,−s), respectively,
where 0 ≤ s ≤ 0.5, just as before. On the vertical path, points 2 and 4 have coordinates (−t,−0.25) and
(t, 0.25), respectively, where 0 ≤ t ≤ 0.5.
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Figure 5: (left) A double-zigzag tile, and (right) a 49 × 49 double-zigzag-mosaic single-line drawing.

Here, we let L(s, t) denote the length-sum, the combined lengths of a double zigzag tile’s horizontal and
vertical paths. By using the Euclidean distance formula and rules for differentiation taught in a multivariable
calculus course, it is straightforward to show that

L(s, t) =
√

1 + 16s2 +
√

1 + 16t2 , ∇L(s, t) = ©­«
16s√

1+16s2

16t√
1+16t2

ª®¬ , ∇2L(s, t) = ©­«
16

(1+16s2)3/2
0

0 16
(1+16t2)3/2

ª®¬ .
Here, we let λ denote the desired length-sum, and the squared error function is f (s, t) = (L(s, t) − λ)2. By
using rules for differentiation taught in a multivariable calculus course, we obtain

∇ f (s, t) = 2(L(s, t) − λ)∇L(s, t) and ∇2 f (s, t) = 2∇L(s, t)∇L(s, t)T + 2(L(s, t) − λ)∇2L(s, t).

Careful analysis of all of the above allows us to obtain several useful results. First, when 0 ≤ s ≤ 0.5
and 0 ≤ t ≤ 0.5, the smallest and largest length-sums are L(0, 0) = 2 and L(0.5, 0.5) = 2

√
5, respectively.

Second, if the desired length-sum λ ∈ [2, 2
√

5], then there exist s-values and t-values for which L(s, t) = λ
and f (s, t) = 0. Finally, at such values the gradient ∇ f (s, t) will equal the zero vector and the Hessian matrix
∇2 f (s, t) will be positive semidefinite (and positive definite if λ ∈ (2, 2

√
5]).

To find x∗ = (s∗, t∗), a vector whose coordinates are ideal s- and t-values, we apply gradient descent
to the squared error function f (x) = f (s, t). Let x0 = (s0, t0) denote the vector whose coordinates are our
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initial s- and t-values. If ∇ f (x0) = ∇ f (s0, t0) , 0, then the direction vector d = −∇ f (x0) will be a descent
direction. Our goal is to find a positive scalar α such that the vector x1 = x0 + αd that specifies the new
s- and t-values has both of its coordinates in the interval [0, 0.5] and satisfies the inequality f (x1) < f (x0).
We start our search for this α by determining the largest step we can take in direction d while keeping both
coordinates of x1 in [0, 0.5]. If our steplength α results in f (x1) < f (x0), we use it. If not, we cut it in half
and check again. We keep cutting the steplength in half until we end up with f (x1) < f (x0).

To obtain the double-zigzag-mosaic single-line drawing shown in the righthand side of Figure 5, we
initialized gradient decent at x0 = (s0, t0) = (0.25, 0.25) for each pixel (i, j). An examination of the formulas
for ∇L(s, t) and ∇ f (s, t) makes it clear that when s = t, the s- and t-coordinates of the gradients will also be
equal, and this will result in the new s- and t-values being equal as well. Consequently, if we start gradient
descent from an initial solution that has s0 = t0, all subsequent solutions will also have equal s- and t-values,
including the optimal solution.

But we don’t have to initialize gradient descent at x0 = (s0, t0) = (0.25, 0.25). The double-zigzag-
mosaic single-line drawing in the top of Figure 6 used (0.25, 0.25), while the one in the bottom used
x0 = (s0, t0) = (0.375, 0.125) when i+ j was even and x0 = (s0, t0) = (0.125, 0.375) when i+ j was odd. Both
are reminiscent of parquet deformations.

Figure 6: Two gradient pieces: (top) in which x0 = (s0, t0) = (0.25, 0.25) and (bottom) in which
x0 = (s0, t0) = (0.375, 0.125) when i+ j was even and (0.125, 0.375) when i+ j was odd.

The lefthand side of Figure 7 displays an additional 49× 49 example, which was made by using gradient
descent with the more complicated initialization scheme. Double-zigzag-mosaic single-line drawings are
nearly as easy to trace as zigzag-mosaic single-line drawings. In each case in which both the number of
rows and number of columns is odd, the line can be thought of as starting in the top left corner. It zigzags
through row 1 from left to right, row 2 from right to left, and so on until it zigzags through row 49 from left
to right. At this point, it moves diagonally to a point just below column 49. It then zigzags up column 49,
down column 48, and so on until it finally arrives at its final destination, a point near the top left corner.

It is also possible to create triple-zigzag tiles and triple-zigzag mosaics. A triple-zigzag tile has a
hexagonal frame instead of a square frame and has three zigzag paths, each with a pair of sliders. When
determining the best form of a triple-zigzag tile, our length-sum function is a function of three variables, one
for each zigzag path. For the triple-zigzag mosaics displayed in the righthand side of Figure 7, we forced
all three variables to be equal and used single-variable calculus techniques similar to those we used to make
our original zigzag mosaics. With triple-zigzag mosaics, it is impossible to achieve the same amount of
contrast as with the double-zigzag mosaics or the original single zigzag mosaics. (In a triple-zigzag tile,
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Figure 7: (left) A double-zigzag-mosaic single-line drawing, and (right) a triple-zigzag mosaic.

the ratio between the maximum possible and minimum possible total lengths of all of the tile’s zigzag paths
is 6
√

3/(3
√

3) = 2, while in double-zigzag and single-zigzag tiles, this ratio is 2
√

5/2 =
√

5/1 ≈ 2.24.)
And with triple-zigzag mosaics, while it is possible to connect the ends of the paths to form a single-line
drawing, it doesn’t seem worth it, as the resulting single-line drawing would be very difficult to follow. But
as illustrated in [1] (which did not consider double-zigzag or triple-zigzag mosaics), it would be possible
to modify triple-zigzag tiles so that they could be used to render color images by employing a CMY color
system and using one zigzag path for cyan, a second zigzag path for magenta, and the third path for yellow.
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