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Abstract

A map on an orientable surface 𝑆𝑔 of genus 𝑔 is maximally complete if any two faces share an edge and the number
of faces is equal to 𝐻 (𝑔), the Heawood number of the surface. Ringel and Youngs’ work on the Map Color Theorem
[11] has shown that such maps exist for all 𝑔. However, explicit geometric descriptions of these maps are hard to
visualize for 𝑔 ≥ 3. In this paper, we construct several maximally complete maps on surfaces of small genus in a
manner that is visualizable and can be used to produce physical models.

Introduction

A map is an embedding of a connected graph 𝑋 into a surface 𝑆 such that each component of 𝑆 \ 𝑋 , called
a face of the map, is homeomorphic to a disk. Since mid-nineteenth century, mathematicians have been
interested in the number of colors required to color the faces of an arbitrary map on a given surface 𝑆 so that
no two faces that share an edge have the same color. This number is called the chromatic number of 𝑆 and is
denoted by 𝜒(𝑆).

Interest in the chromatic number originated in 1852 from Francis Guthrie’s observation that four colors
suffice to color a map of the counties of England, so that no two bordering countries share the same color
[10]. The claim that every map on the sphere is four-colorable remained an open problem for more than a
century until Kenneth Appel and Wolfgang Haken completed a computer-assisted proof in 1977, [1] and [2].

The analogous problem for surfaces of higher genus was considered by Percy John Heawood, who in
1890 proved that the chromatic number of 𝑆𝑔 is bounded above by the Heawood number 𝐻 (𝑔) [8], defined
below.

Table 1: Heawood numbers.

𝐻 (𝑔) B
⌊

7 +
√︁

1 + 48𝑔
2

⌋
𝑔 0 1 2 3 4 5 6 7 8 9 10 11 12

𝐻 (𝑔) 4 7 8 9 10 11 12 12 13 13 14 15 15

The Heawood conjecture asserts that 𝜒(𝑆𝑔) = 𝐻 (𝑔) [8]. To prove this conjecture, it suffices to show that
for each 𝑔, there exists a map on 𝑆𝑔 requiring 𝐻 (𝑔) colors. The Heawood conjecture remained a long-standing
open problem, until Gerhard Ringel and J. W. T. Youngs completed a proof in 1968, building on work of
many others and utilizing the theory of current graphs [11].

Maps in which any two faces share an edge are called complete maps. Coloring a complete map requires
as many colors as the number of faces in the map. Since 𝜒(𝑆𝑔) ≤ 𝐻 (𝑔), no complete map on 𝑆𝑔 can contain
more than 𝐻 (𝑔) faces. Consequently, complete maps on 𝑆𝑔 with 𝐻 (𝑔) faces are called maximally complete.
Simple examples of maximally complete maps are the four-color tetrahedron map on the sphere and the
seven-color maximally complete map on the torus, originally developed by Heawood [11].
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Maximally complete maps on surfaces of small genus were constructed in early works on the map
coloring problem, and descriptions of maximally complete maps on orientable, genus ≤ 6 surfaces were
given in an 1891 paper by Lothar Heffter [9]. Descriptions of maximally complete maps for other small
genus surfaces appeared in the literature in following decades. However, the maps are usually described by
means of an adjacency table, whose 𝑖-th row lists the faces adjacent to the 𝑖-th face in cyclic order with respect
to the orientation of the surface. The adjacency table in Figure 1(a), which appeared in Heffter’s 1891 paper
[9], describes a map on 𝑆3 consisting of nine pairwise adjacent octagonal faces, labeled 1-9. The first row,
for example, corresponds to face 1, and its entries indicate that faces 2, 3, 4, 5, 6, 7, 8, and 9 appear along the
boundary of face 1 in that order with respect to the orientation.

(a) (b)

Figure 1: (a) Adjacency table for a 9-color maximally complete map on 𝑆3 by Heffter [9].
(b) Moira Chas’ crochet model of a maximally complete 12-color map on 𝑆6, based on Figure 9.

The disadvantage of adjacency tables is that it is difficult to use them to reconstruct maps that are easily
visualizable or suitable for physical models. In contrast, easily visualizable planar diagrams for maximally
complete maps on the sphere, torus, and genus 2 surface are readily found in the literature, for instance, in
[6], [7], [11], and [13]. Moira Chas’ AMS Feature article on Crochet Topology ends by challenging readers
to construct an easily visualizable maximally complete map on a genus 3 surface [5]. Multiple works in the
Bridges conference proceedings in 2023, such as [3], [4], [12], and [14], also discussed various aspects of the
9-color, maximally complete map on the genus 3 surface, and complete maps on surfaces of higher genus.

The aim of this paper is therefore to fill a gap in the literature by providing several maximally complete
maps on orientable surfaces of small genus in a manner that is easily visualizable and can be used to create
physical models. These maps were constructed by a new method of removing disks from complete maps on
surfaces of smaller genus and identifying boundary circles in pairs. We give diagrams of maximally complete
maps on the orientable surfaces of genus 3, 4, 5, 6, 7, 10, and 12, and describe their constructions in detail.
Using these diagrams, Moira Chas has made crochet models of several maximally complete maps, one of
these models is shown in Figure 1(b).

Construction of Maximally Complete Maps

This section gives explicit constructions of maximally complete maps on orientable surfaces of small genus.

Planar Diagrams
Planar diagrams are a convenient way to represent maps on surfaces. In a planar diagram, a surface is
represented by a polygon, or a polygon with holes, in which pairs of edges are identified according to a
specified orientation.

Gu, Stewart, and Yamin

290



The planar diagram on the left of Figure 2(a) shows a square whose edges are identified in colored pairs.
When the edges of the same color are identified so that the arrows overlap, the resulting surface is a sphere.
Similarly, the planar diagram on the right of Figure 2(a) represents a torus. Two other planar diagrams for the
torus, obtained from hexagons, are shown in Figure 2(b). A planar diagram for the genus 2 surface is shown
in Figure 2(c). To visualize how the edge identifications of this planar diagram result in a genus 2 surface,
imagine folding this diagram in half along a vertical line so that its left and right sides are identified, and so
that its inner triangular holes are identified in pairs.

(a) (b) (c)

Figure 2: Planar diagrams for the (a) sphere & torus, (b) torus, obtained from hexagons,
(c) genus two surface, obtained from a polygon with holes. Within each planar diagram, edges of

the same color are identified in the orientation indicated by the arrows.

Complete Maps on the Sphere, Torus, and Genus 2 Surface
In this section, we give planar diagrams for several complete maps on the sphere, the torus, and the genus 2
surface that will be used in the constructions of maximally complete maps on surfaces of higher genus.

The planar diagrams in Figure 3(a) show complete maps on the sphere of 2, 3, 3, and 4 colors, respectively.
In each planar diagram, edges of the same color are identified according to the arrows. One can verify that in
each map, any two faces share an edge. The planar diagrams in Figure 3(b) show complete maps on the torus
of 6, 6, and 7 colors, respectively. The planar diagram in Figure 3(c) shows an 8-color maximally complete
map on a genus 2 surface. It was obtained by physically inspecting Moira Chas’ crochet model [5] of Susan
Goldstine’s 8-color map [6].

(a)

(b) (c)

Figure 3: Complete maps on (a) the sphere of 2, 3, 3, & 4 colors respectively,
(b) the torus of 6, 6, & 7 colors respectively, (c) 𝑆2 of 8-colors.
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Maximally Complete Maps on Genus 3, 4, 5, 6, 7, 10, and 12 Surfaces
We construct maximally complete maps on the surfaces of genus 3, 4, 5, 6, 7, 10, and 12 as follows:

1. Start with two complete maps on surfaces of smaller genus, called the base maps of the construction.
2. Remove the same number of disks from the two base maps, at vertices or along edges, in a way that the

faces in each map remain pairwise adjacent and homeomorphic to disks.
3. Connect the two base maps by identifying the boundary circles of the removed disks in pairs. Identify

each boundary circle in the first base map with one in the second, and choose the identifications so that
each face in the first base map becomes adjacent to each face in the second.

The result of this procedure is a complete map whose number of faces is the combined number of faces
in the two base maps and whose genus is the sum of the genera of the two base maps, plus the number of
identified pairs of boundary circles, minus 1. In each construction, the number of faces in the two base maps
and the number of identified pairs of boundary circles are chosen so that the resulting complete map on the
new surface 𝑆𝑔 has 𝐻 (𝑔) faces, and so is maximally complete.

In the diagrams below, the boundary circles in the base maps are numbered to show which pairs are
identified. There are two boundary circles of each number, one black and the other divided into colored arcs.
The colors show how the two boundary circles are identified, where the arc on the black circle that bounds a
face of a given color is identified with the corresponding arc of the same color on the colored circle.

Genus 3 The diagram in Figure 4(a) shows a maximally complete 9-color map on the genus 3 surface. The
base maps of this construction are the 7-color maximally complete map on the torus and a 2-color complete
map on the sphere. The edge identifications in the base maps are the same as in Figure 3, and are thus
omitted. The base maps are connected along the boundaries of three pairs of removed disks, in such a way
that the pink and brown faces of the map on the sphere both become adjacent to all seven faces of the map on
the torus.

(a) (b)

Figure 4: (a) A maximally complete 9-color map on the genus 3 surface, obtained from a 7-color
maximally complete map on the torus and a 2-color complete map on the sphere.

(b) Moira Chas’ crochet model of the same maximally complete 9-color map on 𝑆3.

The diagram in Figure 5 shows another maximally complete 9-color map on the genus 3 surface. In
this construction, the base maps are a 6-color complete map on the torus and a 3-color complete map on the
sphere. The orange and yellow faces of the base map on the torus are drawn twice so that the colors on the
third boundary circle can be clearly shown.

Genus 4 The diagrams in Figure 6 and 7 show maximally complete 10-color maps on the genus 4 surface.
In Figure 6(a), the base maps are a 6-color complete map on the torus and the 4-color tetrahedron map on
the sphere. In Figure 6(b), the base maps are the 7-color maximally complete map on the torus and a 3-color
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Figure 5: A maximally complete 9-color map on 𝑆3, obtained from a 6-color complete map on the torus and
a 3-color complete map on the sphere.

complete map on the sphere, where the tan, blue, and red faces in the 7-color map on the torus are drawn
twice so that the colored boundary circles can be clearly shown. In Figure 7, the base maps are an 8-color
complete map on 𝑆2 and a 2-color complete map on the sphere.

(a) (b)

Figure 6: A maximally complete 10-color map on 𝑆4, obtained from:
(a) a 6-color complete map on the torus and the 4-color tetrahedron map on the sphere,

(b) a 7-color maximally complete map on the torus and a 3-color complete map on the sphere.

Figure 7: A maximally complete 10-color map on 𝑆4, obtained from an 8-color maximally complete map on
𝑆2 and a 2-color complete map on the sphere.
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Genus 5 The diagram in Figure 8 shows a maximally complete 11-color map on the genus 5 surface. The
base maps are an 8-color maximally complete map on 𝑆2 and a 3-color complete map on the sphere.

Figure 8: A maximally complete 11-color map on 𝑆5, obtained from an 8-color maximally complete map on
𝑆2 and a 3-color complete map on the sphere.

Genus 6 The diagram in Figure 9 shows a maximally complete 12-color map on 𝑆6. The base maps are
two 6-color complete maps on the torus. The faces in each base map have been drawn multiple times so that
the colors of boundary circles are clearly shown. See Figure 1(b) for Moira Chas’ crochet version.

Figure 9: A maximally complete 12-color map on 𝑆6, obtained from two 6-color complete maps on 𝑆1.

Genus 7, 10, 12 Figure 10 shows a maximally complete 12-color map on a genus 7 surface. The base maps
are two 6-color complete maps on tori, the faces on which have been drawn multiple times so the colors of
boundary circles can be clearly shown. Figure 11 shows a maximally complete 14-color map on a genus 10
surface. The base maps are a 12-color maximally complete map on 𝑆6 and a 2-color complete map on the
sphere. Figure 12 shows a maximally complete 15-color map on a genus 12 surface. The base maps are a
12-color maximally complete map on 𝑆6 and a 3-color complete map on the torus.
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Figure 10: A maximally complete 12-color map on 𝑆7, obtained from two 6-color complete maps on 𝑆1.

Figure 11: A maximally complete 14-color map on 𝑆10, obtained from a 12-color maximally complete map
on 𝑆6 and a 2-color complete map on the sphere.

Figure 12: A maximally complete 15-color map on 𝑆12, obtained from a 12-color maximally complete map
on 𝑆6 and a 3-color complete map on the torus.
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Summary and Conclusions

We hope that the aforementioned method of constructing maximally complete maps, and the corresponding
explicit diagrams for maximally complete maps on the genus 3, 4, 5, 6, 7, 10, and 12 surfaces, may be of use
to mathematical artists and others who may be interested in creating physical models or visual representations
of maximally complete maps. Currently, constructing maximally complete maps by this method is an ad-hoc
process. We wish to explore whether this method can be applied to find maximally complete maps for a
larger class of surfaces, and to implement a computer program that can carry out the method automatically.
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