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Abstract  
A variation on Hamiltonian cycles in graphs are found in—or can be applied to—designs in a variety of art forms 
such as dance and educational kinesthetic activities, polyrhythms, lace shirtwaist buttons, paths of billiard balls in 
polygons, Celtic knots, and string figures. We examine a variety of what may be idiomatically called pseudo–
Hamiltonian tours, but which we are describing as {n/(a1, a2, a3,…, am) designs. We suggest some applications, 
with special attention to their use in embodied mathematics movement explorations. These designs can help provide 
crossover points for visual and movement artists and mathematicians to make connections between their fields. 

 
Introduction 

What might a game with playground balls, partner dances, polyrhythms, billiard ball paths, Celtic 
knots, string figures, and lace shirtwaist buttons have in common? These all may incorporate designs that 
pop up in a variety of arts and arts oriented activities. Appearances of the designs in dance involve the 
location of dance partners in a circular formation, as partners travel around the circle. Or in circular displays 
of polyrhythms. We may see a correspondence between certain billiard ball patterns, Celtic knots, and 
geometric string figures. The designs display connections to recently explored variations on Hamiltonian 
tours in graphs. We will examine several of these designs and suggest further explorations. They may aid 
artists and mathematicians in developing sometimes surprising connections between their fields. 

 
Ball Passing Problems 

In November 2022, the first author was resident for a week at the University of Wisconsin–Madison, 
in an NSF funded project collaborating with the second author, working together on exploring kinesthetic 
activities that involve mathematical problem solving. Our goal was to explore aspects of rhythmic 
movement patterns and their relation to mathematical thinking and learning. The collaboration initially 
consisted of weekly one-hour Zoom meetings, and the week in Madison included daily meetings Monday 
through Thursday plus a day and a half workshop for approximately ten participants on Friday, Oct. 28 and 
Saturday, Oct. 29, 2022. We also met several times with Michelle Ramos, dance faculty member in the UW 
Dance Department and planned a visit by workshop participants to her Friday ballet class.  

Our discussions and workshop activities included explorations of two types of rhythmic composition: 
the decomposition of rhythmic structures according to the lengths of component sections of a rhythm, and 
the creation of polyrhythmic patterns that overlay two periodic patterns. In the Saturday workshop we 
engaged in a ball passing game that kinesthetically employs structures found in polyrhythms. The ball-
passing activity led to interesting mathematical and movement explorations and problem-solving, and 
included examinations of symbolic and algebraic forms for representing the activity. That activity had 
participants standing in a circle periodically passing and bouncing rubber playground balls around the 
circle, while keeping track of who were the starting and ending participants as the passes proceeded.  

The ball passing activity shares mathematical connections with certain mathematical properties of n-
cycles called star polygons that also appear in polyrhythms [10,ch.2]. Suppose ten participants stand equally 
spaced in a circular formation as shown in Figure 1(a), with participants labeled 0 through 9, the so-called 
least residues mod 10, around the circle. In this modular arithmetic labeling scheme participant 0 could 
equally be called participant 10. Participant 0 begins passing a ball to the second person clockwise, number 
2, and participants continue passing to the second person clockwise. Note that the ball returns to 0 after five 
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passes. At the same time person 5, for example, might similarly pass a second ball 2 participants clockwise. 
Two interlocking pentagonal paths of the balls are created. Together these are called the {10/2} (compound) 
star polygon, using what is known as Schläfli notation. Every vertex has degree 2 in such a configuration. 
Figure 1(b) shows the {10/3} star polygon, in which the ball is passed 3 participants clockwise on each 
pass. In the {10/3} sequence that one ball reaches each participant, while the {10/2} creates disjoint 
pentagonal paths, one to the even numbered participants, the other to the odd numbers. These patterns are 
well known and are described by the following proposition utilizing the greatest common divisor (gcd) of 
the number of participants n and the number of participants forward for each pass, k [2, pp. 36–38]. We use 
directed edges shown by arrows in our discussion, though we often leave out the arrowheads if the sequence 
is clear. 

 

   

Figure 1: (a) and (b) star polygons. (c), (d), and (e) use an extension of the Schläfli notation in which 
edges alternately jump 1 then 3 places; 1 then 2 places; and 1, 8, and   4 places, clockwise respectively. 
We use thick blue, medium thickness red, and thin brown edges in (c), (d), and (e) for better visibility. 

 
Proposition 1. The {n/k} star polygon using the vertices of the regular n-gon is composed of gcd(n,k) 
copies of disjoint regular !

"#$	(!,()
	- gons. Each such polygon circles the n-gon’s center (

"#$	(!,()
 = *#+	(!,()

!
 

times, where lcm(n,k) is the least common multiple of n and k, and gcd(n,k) is their greatest common divisor. 
We will discuss a generalization of star polygons using an extension of Schläfli notation that we are 

calling {n/(a1, a2, a3,…, am)} designs. Care needs to be taken in the definitions of these concepts. We 
identify and label the vertices of Cn with the cyclic group Z/nZ, the integers modulo n, where those vertices 
are equally spaced clockwise from 0 to n – 1 around a circle. We define a directed edge (x, y) between two 
vertices x and y of Cn as the edge from vertex x to vertex y. We say the weight of the edge is the element of 
the set of residues mod n, {0, 1, 2, …, n – 1}, that is congruent to y – x (mod n). Intuitively, this is the 
number of vertices from x + 1 to y inclusive around Cn in the clockwise direction. We will not include a 
loop or single edge of weight zero from a vertex x to itself in our discussion, though the sum of the weights 
of a circuit with more than one edge derived from Cn may be congruent to zero, mod n. For calculations 
involving the vertices we will freely use modular arithmetic and if a vertex label is k we will simply call 
that vertex k, though it may be convenient at times to use another integer congruent to k, mod n.  
 
Definition. Letting Am  = (a1, a2, a3,…, am) we define the design {n/Am} to be a sequence of directed edges 
between vertices of Cn of weights in the order a1, a2, a3,…, am that starts at a given vertex, often 0, and 
repeats the sequence Am until the edge with weight am first terminates at the starting vertex.  

Note that the vertices of {n/Am} are those of Cn though {n/Am} may or may not include directed edges 
belonging to the cycle Cn. The collection of these directed edges derived from Cn form a multigraph in 
which two vertices may be connected by more than one edge. If the design {n/Am} is called on to repeat an 
edge from vertex x to y then that requires a new edge since {n/Am} forms what is known as a circuit in graph 
theory, in that it is a closed walk that may repeat vertices but not edges. We may also freely substitute an 
edge weight ai by another integer congruent to ai, mod n. It may be more convenient, for example, to refer 
to the edge in C10 from 0 to 8 as the edge of weight –2, since –2 ≡	8 (mod 10) and it may be easier to 
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visualize an edge going two steps counterclockwise rather than one going eight steps clockwise. Similarly, 
the directed edge from 8 to 0 in C10 will have the weight 2. 

In Figures 1 (c), (d), and (e) the design may represent passes of a ball along edges of alternating weights 
clockwise around C10. For example, {10/(1,3)} indicates that the sequence of passes or edges clockwise 
around C10 starting at 0 is 1,3,1,3,1,3,…, This corresponds to the new idea the paper [8] introduces as a 
(1,3)-step Hamiltonian cycle or tour of the 10-cycle C10. Each vertex in C10 is visited once by this cycle. 
Yet we do not include in this design every pass or edge of weight 1 or 3, for example the weight 3 edge 
from vertex 2 to 5. Here the thick blue weight 1 edges  make up a “perfect matching” in which each vertex 
has degree 1. The thinner red weight 3 edges are also a perfect matching, and in fact this partition into two 
perfect matchings is characteristic of every {n/(a,b)} cycle or design that visits each vertex exactly once in 
any graph with an even number of vertices.  

Figure 1(d) is a {10/(1,2)} design. Its seventh edge ends at vertex 0 and has weight 1. However, for its 
sequence of edges to first end at 0 with an edge of weight 2 so it then seamlessly continues with an edge of 
weight 1, {10/(1,2)} visits each vertex twice; we denote this {10/(1,2)} design as an example of a (1,2)-
step double- or 2-Hamiltonian tour of the vertices of C10. Figure 1(e) is an example of a{10/(1,8,4)} design 
or a (1,8,4)-step triple- or 3-Hamiltonian tour of C10 which visits each vertex three times. 

 
Definition. An {n/Am}-step k-Hamiltonian tour is a sequence of edges between the vertices of Cn of weights 
a1, a2, a3,…, am that repeats that sequence until the edge with weight am first terminates at the starting vertex 
and such that this circuit visits each of the vertices of Cn k times.  

An {n/Am}-step k-Hamiltonian tour may also be called a pseudo-Hamiltonian tour [1], though we are 
also using the adjective pseudo idiomatically to indicate {n/Am} designs that generate configurations of 
general artistic interest.  

The paper [8] introduces and explores these concepts in all connected graphs G, not only cycles as in 
this paper; it assigns the edges (x,y) and (y,x) the same weights, namely the graphical distance between x 
and y in G, which is the number of edges in the shortest path in G between them. Thus in that framework 
both edges (0,8) and (8,0) in C10 have weights 2. A result is that in [8] there are no edges at all with weights 
8 between vertices of C10 since the maximum graphical distance between the vertices of C10 is 5. 

In our Madison workshop we complicated the passing rules to create problem solving that combined 
kinesthetic whole body engagement with mathematical concepts. The goal was to kinesthetically embody 
the simultaneous playing of two periodic rhythmic patterns with distinct periods that form a polyrhythm. 
For example, in one exercise, shown in Figure 2(a), Erica began a sequence of passes of the red ball three 
participants clockwise while Andrea began a sequence passing the blue ball two participants clockwise, 
both with the same tempo so the passes of the two balls occurred together. This duplicates a polyrhythm in 
which 2 beat and 3 beat rhythms are played against an overall 5 beat pattern, with distinct starting down 
beats for the 2s and 3s. When might the balls, or down beats, arrive at the same person at the same time? 
Participants used the following four methods to successfully answer this question, but also to consider other 
mathematical or movement ideas that might arise: 

 
1. Simply trying it and seeing what happened and what skills were necessary (for example, if the balls 

seemed likely to hit in the air, we bounced one and threw the other over it!) 
2. Tabulating a list of people the balls reached on each pass, see Table 1. 
3. Drawing diagrams like Figure 2(a); the small diagrams help us predict when the balls might collide! 
4. Using modular arithmetic to solve the problem symbolically: Letting x represent the number of passes 

needed for the two balls to reach the same person, and assuming the positive direction around the 
circle or pentagon is clockwise, note that balls start at vertices 0 and 1 and that 3x ≡ –2x (mod 5). 
Here we use the multiplicative inverse in which 4–1≡	4 since 4∙4  = 16 ≡ 1 (mod 5): 
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0 + 2x ≡ 1	 +	3x (mod 5) 
4x ≡1 (mod 5)     [Subtract 3x from both sides] 

       4–1∙4 x ≡ x ≡	4–1∙1 ≡	4 (mod 5)  [Multiply both sides by 4–1] 
This problem has a standard mathematical solution involving linear congruences in modular 

arithmetic. If the blue ball starts at person a and is passed clockwise b participants on each pass, and the 
red ball starts at person c and is passed clockwise d participants on each pass, in an n person circle, then the 
congruence equation a + bx ≡ c + dx (mod n) has solutions given by the following proposition. See for 
example [3,ch. 5.2]. 

 
Proposition 2. The linear congruence a + bx ≡ c + dx (mod n) has solutions, mod n, if and only if  
e = gcd(b – d, n) is a divisor of c – a. We then solve: 

 

 (b – d) x ≡ (c – a) (mod  n) by finding 

f ≡ &,-.
/
' &0-1

/
'
-2

 (mod !
/
) 

with solutions x ≡ f + &!
/
'k (mod n), for k = 0, 1, 2, …, e – 1  

 
 Figure 2:  (a) {5/2} blue edge and {5/3} red edge designs meet at vertex 3. (b) {6/(3,2)} red edge and 

{6/(4,3) blue edge designs meet at vertex 2. (Names are those of the actual participants.) 
 

Table 1:  {5/2} and {5/3} passing patterns. 
 

Pass number: 0 1 2 3 4 
Person holding blue ball at end of pass: Andrea Mitch Michael Erica Karl 
Vertex of blue ball at end of pass  0 2 4 1 3 
Person holding red ball at end of pass: Erica Michael Mitch Andrea Karl 
Vertex of red ball at end of pass 1 4 2 0 3 
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 For example, in Figure 2(a), a = 0, b = 2, c = 1, d = –2, n = 5, e = 1, f ≡ 4 (mod 5). An example that 
might be visualized using a decagon (not shown) is a = 1, b = –2, c = 3, d = 4, n = 10, e = 2, f ≡ 3 (mod 5), 
and x ≡ 3 or 8 (mod 10). (When we use  the = symbol here instead of ≡ we are usually restricting discussion 
to plus or minus the “residues,” mod n, which are the non-negative integers from 0 to n–1.) 

We can easily characterize {n/(a,b)} designs that create (a,b)-step Hamiltonian tours that visit each 
vertex once in Cn. For example, pick two odd numbers, say 3 and 5. Then pick a third number, say 10, such 
that the gcd(10,3+5) = 2. Then {10/(3,5)} will be a (3,5)-step Hamiltonian tour in C10. See Figure 3(c) 
which is a plan for a 10/(3,5)} ten-finger string figure based on a billiard ball artwork modeling a 
periodically bouncing ball in a regular pentagon where angle of incidence equals angle of reflection created 
by Diana Davis [5]. This {n/(a,b)} design pattern generalizes to include {n/(a1, a2, a3,…, am)} designs: 

Theorem 1. Label the vertices of Cn using the residues, mod n, {0, 1, 2, …, n–1}. Then {n/(a1, a2, a3,…, 
am)} is an (a1, a2, a3,…, am)-step Hamiltonian tour of Cn if and only if the following conditions hold: 
1. gcd(n, a1 + a2 + a3 +,…, + am) = m. 
2. The m sums a1, a1+a2, a1+a2+a3, …, a1+a2+a3 +,…, +am are distinct, mod m.  

For a proof with examples and further results, see the Supplement to this paper in the Bridges Archives.  
 

In the Madison workshop we investigated the following problem connected to (a,b)-step Hamiltonian 
cycles. Six participants, shown in Figure 2(b), again passed playground balls in unison, but each ball was 
passed using an alternating sequence of participant skips. The red ball, shown by the red arrows, was passed 
starting at vertex 1, by Erica, using the pass sequence 3, 2, 3, 2, …. . The blue ball was passed starting at 
vertex 2, by Mitch, using the sequence 4, 3, 4, 3, …. . Note that we might also interpret a pass of +4 as 
equivalent to –2, since –2 ≡ 4 (mod 6). We asked when, if at all, do the balls return to the starting person? 
When, if at all, do they arrive simultaneously at the same person? What mathematical and movement ideas 
might we observe and employ? Again, we first simply tried performing the pattern, becoming more adept 
at the movement task as we worked. Table 2 shows the locations of the balls after each pass. Algebraic 
linear congruence methods also allow us to calculate when the two patterns send the balls to the same person 
at the same time or when they begin a repetition of the pattern — see the explanation in the Supplement to 
this paper. Both balls arrive at the same person at the end of 6k + 5 passes for any non-negative integer k. 

 

Table 2:  {6/(3,2)} and {6/(4,3) passing patterns. 
 

Total number of passes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Vertex of red ball 1 4 0 3 5 2 4 1 3 0 2 5 1 4 0 3 5 2 4 
Vertex of blue ball 2 0 3 1 4 2 5 3 0 4 1 5 2 0 3 1 4 2 5 

 

Table 3 shows the results of experiments using two ball passing patterns chosen from {6/(2,3)}, 
{6/(3,2)}, {6/(4,3)}, and {6/(3,4)}, one of which is started at position 0 and the other at position 1 in a 6-
person circle. An ∞ symbol indicates the balls never meet at the same person. The notation k (mod n) 
indicates the balls reach the same person at the end of pass k (mod  n). 
 

Table 3: Several combined alternating patterns for 6-person circle. 
 

Start at 0 → 
Start at 1↓ {6/(2,3)} {6/(3,2)} {6/(4,3)} {6/(3,4)} 

{6/(2,3)} ∞ 1 (mod 2) ∞ 1 (mod 6) 

{6/(3,2)} ∞ ∞ ∞ ∞ 
{6/(4,3)} ∞ 5 (mod 6) ∞ ∞ 
{6/(3,4)} 5 mod 6 ∞ 1 (mod 2) ∞ 

 

What movement skills and maneuvers are necessary? What connections do participants make between 
the embodied activity and the mathematical concepts — or rhythmic or other artistic patterns? What patterns 

Artsy Pseudo-Hamiltonian Tours

175



 
 

are discernable for distinct numbers of participants, different starting positions, and varied {n/(a,b)} 
patterns? These questions could make engaging embodied math investigations in a variety of courses.  
 

Polyrhythms, Circular Dance Patterns, Celtic Knots, and String Figures 
Graphs with the undirected edges of Figures 1(a), (b), (d), and (e) are known as circulant graphs in which 
vertices are labelled 0, 1, 2,…, n–1, such that if vertices v and v + d (mod n) are joined by an edge then so 
are all vertices x and x + d (mod n). These circulant graphs are often used to display polyrhythms. Figure 
1(a) may be seen as a two-beat rhythmic pattern played over a ten-beat rhythm, the two-beat pattern forming 
two disjoint pentagons, one starting on an even vertex (even vertex beats might be considered the down 
beats of the ten-beat pattern), the other on an odd vertex. Figure 1(b) might show a three-beat rhythm played 
against a ten-beat rhythm. Figure 1(d) shows a three-beat rhythm, each bar of which is composed of 1 beat 
plus 2 more beats; it circles the diagram 3

"#$	(3,24)
 = 3 times before beginning again at the starting point zero.  

Figure 1(e) exemplifies a difference between the use of these figures to represent kinesthetic versus 
rhythmic patterns. Since 8 ≡ –2 (mod 10),  a ball passing or dance partner switching routine might have the 
mover (the ball or the dancer) move clockwise 1 – 2 + 4 ≡ 3 places on each (1,–2,4) phrase and thus circle 
the figure 3 times before beginning to repeat the pattern. As a rhythmic phrase, each (1,8,4) phrase 
represents 1 + 8 + 4 = 13 beats, so the figure illustrates a polyrhythm combining 13 beat and 10 beat simple 
rhythms. Thus the 13 beat phrase begins its polyrhythmic pattern again with respect to the 10-beat phrase 
after “circling” the 10-beat 10-cycle 23

"#$	(23,24)
 = 13 times.  

These designs are also very simple versions of possible juggling patterns. However, each juggler would 
most likely pass juggling implements on each beat, and jugglers do not typically limit themselves to circular 
formations. The designs may represent paths dance partners take in circular dance formations, in which 
case every position may also represent a partner about to move to a new position on each musical phrase. 
For discussion of connections between juggling patterns and partner dance switching often using {n/k} 
polygon patterns, see [13], which mentions, for example, the dance Bingo that uses an {n/4} pattern. In [9] 
Christine von Renesse details classroom activities exploring partner paths of the form {n/k}and mentions 
having also explored the {n/(1,2)} pattern with math and movement classes in the Salsa Rueda dance form. 
She also suggests investigating {n/(a,b,c)} dance patterns. Folk dance mixers are sometimes simple, having 
partners move one person clockwise or counterclockwise in the circle to find new partners, but often involve 
randomness in how dancers move to the next partner. An interesting further exploration would be to 
catalogue those mixers that use repeating but complex patterns.  

 

  
Figure 3: (a) Ball passing pattern Celtic knot {6/(2,3,-2,–2, 3,2)}; or six dancers following arrows. (b) 

Six dancers following {6/2} and {6/–2} patterns, or 2-ball passing. (c) {10/(3,5)} string figure. (d) String 
loop octahedron 2{6/(1,–2)} and “bouquet” from which it is derived. 

 

Connections can also be made between Celtic and other knots, ball passing (or juggling) patterns, and 
string figures. Figure 3(a) is a popular Celtic knot sometimes known as a Celtic Love Knot due to the 
interlocking heart shapes. It could also represent a ball passing pattern for six participants, following the 

(c) (d)
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arrows, of {6/(2,3,–2.–2, 3,2,)}, with the ball starting at position 0. Figure 3(b) is a well-known Celtic knot 
which is a variation on the Triquetra or Trinity knot. It could represent a ball passing pattern for six 
participants and two balls, one ball starting at position 0 and following a {6/–2} pattern, the other starting 
at position 1 and following a {6/2} pattern. Or it might represent the movements of six pairs of dance 
partners in which six of the partners remain static in positions 0 through 5, while three of their partners 
move 2 positions counterclockwise to new partners and three other partners move 2 positions clockwise to 
new partners. Figure 3(a) could also represent a circular partner dance for six pairs of dancers, with dancers 
following the arrows to the next partner. In all these designs of dance paths, the under curves precede over 
curves in time. See [12] for a description of how the undercurve/overcurve features determine how they 
may be performed, and for the connections to knot theory and other topological concepts. 

String figures, designs usually created on the fingers and hands with a small loop of string, have 
extremely ancient and surprisingly worldwide origins. Figure 3(c) shows a {10/(3,5)} design for a string 
figure, made up of a single unknotted loop, in which the ten fingers of two hands are the vertices. It is meant 
to duplicate as closely as possible a design by Diana Davis titled "A Celtic-knotted periodic path on a 
pentagon billiard table" exhibited at the Bridges Math and Art conference 2023, see [5]. This string figure 
is the unknot rather than Davis's alternating Celtic knot. A video showing its construction is at [14]. 
Instructions for {9/4}, {7/3}, {5/2} and {11/5} string figures are at [11] along with a video at [4, “Making 
Stars”]. Figure 3(d) shows a {6/(1,–2)} design. It duplicates the design of a three-person string loop 
octahedron. Each vertex is held by one hand; see a video at [4, “String Quartet”] showing how it is created. 
This can also be seen as the “derived graph” of the two-petal “bouquet” in the lower left of Figure 3(d) 
using methods of topological graph theory [6, pg. 60]. In fact the {n/Am} designs can be understood as the 
application of bouquets with weights assigned in Z/nZ used to derive these designs. Figure 3(d) might also 
be a design for six dancers who each move through each of the six positions, again in which under curves 
precede over curves, or for ball passing or juggling patterns. Here are instructions for making the {10/(3,5)} 
string figure: 

 
1. Use a loop of length about 30 inches. 
2. Start with the loop on both palms held by thumb and ring fingers of each hand. 
3. Lt index finger hooks rear ring string from above and shares loop with Rt index. 
4. Lt pinky hooks ear thumb string from above and shares loop with Rt pinky. 
5. Lt middle hooks rear pinky string from above and shares loop with Rt middle. 
6. Adjust figure on hands so loops on fingers are as equidistant as possible. 

(For string figure help consult string figure vocabulary lessons at isfa.org!) 
One further entertaining application of these ideas involves the long history of puzzles centered on 

finding Hamiltonian tours of rectangular boards by chess pieces that alternate between moves of two pieces, 
for example between knight and bishop moves [7, 15]. 
 

Shirt Lace Buttons 
 

 
Figure 4: Shirt lace buttons by Laurel Shastri exhibiting several of the {n/(a,b)} patterns. 

 

The shirt lace buttons created by Laurel Shastri and shown in Figure 4 exhibit some of the {n/k} and 
{n/(a,b)} patterns we have been describing above [16]. For example, the third button from the left shows a 
regular 7-gon together with a {7/3) star polygon. But it could also be considered (and constructed) as a 
{7/(1,3)} design since both polygons are built with yellow thread. 
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Summary and Conclusions 
Many art forms utilize designs described here as pseudo-Hamiltonian graph tours, and tabulating more 
examples and explanations of their connections could  make a useful project. Further mathematical 
explorations of (a1, a2, a3,…, am)-step k-Hamiltonian tours of the cycle Cn and their applications in various 
art and movement forms would be a useful and engaging investigation. Knowledge about them could also 
inform aesthetic decisions in a variety of art forms. 
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