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Abstract
A periodic strip is a finite-width strip of tiles that repeats in one direction with frieze symmetry. They have many
potential applications in art and design, particularly because of the ability to construct a finite portion of a periodic
strip and wrap it seamlessly around a cylinder. I show that under very mild conditions, shapes that tile the plane also
admit periodic strips of any desired width. This fact is true even for aperiodic tile sets. I explain why periodic strips
exist, give simple methods for constructing them, and show examples for a variety of well known tilings.

Introduction
Although we think of a tiling of the Euclidean plane as an arrangement of shapes that extends to infinity in
every direction, a drawing of a tiling is necessarily limited to a finite excerpt. The choice of excerpt naturally
depends on the intended application, and might be influenced by both aesthetic considerations and pratical
limitations in manufacturing techniques.

In this work I consider the construction of strips of tiles, arrangements of tiles that extend to infinity
along a line in one direction, but are confined to a finite width in the perpendicular direction. A finite-width
strip provides the raw material from which decorative friezes of tiles of any length might be extracted. To
define strips precisely, recall first that a slab is a region of the Euclidean plane bounded by two parallel lines.
A strip of tiles is an infinite collection of tiles (topological disks) such that:

• The tiles have disjoint interiors (they do not overlap);
• The union of the tiles contains some slab S𝑖 , and is contained in another slab S𝑜; and
• The union of the tiles is simply connected, and the interior of the union is connected.

The third condition ensures that the strip’s boundary is made up of exactly two curves. Thus tiles do not
enclose any internal holes or form subsets connected to the rest of the strip by a single point.

In a typical design context, we will want to construct a strip that covers a slab of some desired width 𝑤,
and will not object if the strip extends a bit farther on either side of that slab. Therefore, rather than measuring
the “exact” width of a strip, I will say that a strip of width 𝑤 is a strip containing a slab S𝑖 of width at least 𝑤.

A strip is periodic if it has a translational symmetry. A periodic strip’s translation symmetries must
necessarily all run parallel to its slabs, meaning that the complete set of its symmetries will form one of the
seven frieze groups [3, Section 1.4]. The period of a periodic strip is the length of its shortest translation
symmetry vector.

In this paper I will demonstrate and discuss a fact that might seem counterintuitive at first: most sets
of shapes that tile the plane also admit periodic strips of all widths. Here I use “most” informally to refer to
tilings commonly studied mathematically or used in art and design; later I discuss the (mild) conditions under
which a set of shapes will behave this way. If a set of shapes admits a periodic tiling, this fact is immediate: a
periodic tiling already contains periodic strips of all widths. What is more interesting is that typical aperiodic
tile sets also exhibit this behaviour, and furthermore that the existence of periodic strips does not contradict
the aperiodicity of the tiles.
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Figure 1: A patch from a kite and dart tiling. Blue vertical lines indicate areas of local reflection symmetry.
The lines come in labelled pairs that can be used to construct periodic strips.

Figure 2: Periodic strips based on the labelled pairs of lines in Figure 1.

Periodic strips have many natural decorative applications. A periodic strip constructed from an aperiodic
tile set preserves the visual character of that set’s tilings and obeys any local matching rules, but avoids the
complexity of working with a general strip. Furthermore, from any periodic strip we may extract a finite
number of periods of the pattern and roll them up into a cylinder. That cylinder could serve as the design
for an object like a lampshade or drinking glass. It could also be used in manufacturing, to apply arbitarily
long friezes to materials. When Kimberly-Clark famously used Penrose rhombs as a quilting pattern for toilet
paper [5], they may very well have adopted a similar approach. Other natural applications would be in printing
fabric or wallpaper, or even in creating patterned cookies [4].

Kites and Darts
Before discussing more general constructions for periodic strips, I give a few explicit examples based on
Penrose’s kites and darts, one of the best known aperiodic tile sets [3, Section 10.3]. In a tiling by kites and
darts, it is particularly easy to identify the building blocks of periodic strips by eye, giving us a quick way to
see these ideas in action.

Figure 1 shows an excerpt from an infinite tiling by kites and darts. Any such tiling contains line segments
that act as “lines of local reflection symmetry”: ignoring any matching rules, the segment either passes
through the line of reflection symmetry of a tile, or passes between a pair of tiles that are congruent through
a reflection across the line. Figure 1 shows some vertical local reflection lines in blue. Each one extends as
far as possible through areas of local reflection. The lines come in five labelled pairs, each pair consisting of
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two lines of equal length, offset horizontally, and encountering congruent sets of tiles along their lengths. It
follows that each pair of lines defines one period of a periodic strip. Figure 2 shows periodic strips based on
the five labelled pairs. Note that although the tiles are not drawn with the matching rules that are required
to enforce non-periodicity, the tiles in these periodic strips obey those rules—no sneaky tricks are needed to
create strips that repeat in the manner shown.

Any tiling by kites and darts must contain pairs of parallel line segments like these, with lengths that
grow without bound. (The existence of these pairs follows from the substitution rules that define the tiling,
but a full proof is beyond the scope of this paper.) Thus, for any desired width, a sufficiently large patch of
kites and darts will contain a pair of lines suitable for constructing a periodic strip of that width.

The Existence and Construction of Periodic Strips
Kites and darts are not exceptional among tile sets in terms of their ability to admit periodic strips. In this
section I argue—without offering a formal proof—that if a set of shapes admits any tilings at all, then we may
generally assume that the set also admits periodic strips of all widths.

A tiling of the plane is called repetitive if, for any finite patch P of tiles, there exists a number 𝑟 > 0
such that every disk of radius 𝑟 in the plane contains a congruent copy of P [2]. In other words, no matter
what finite patch of tiles you identify in the tiling, you are guaranteed to find another copy of that patch not
too far away. Not every tiling is repetitive. But remarkably, Radin and Wolff showed that a set of shapes that
tile the plane must admit at least one repetitive tiling [7].

For the construction of periodic strips we require a condition that is only slightly stronger. I will call a
tiling translationally repetitive if it satisfies the definition of repetitivity above with “congruent” replaced by
“translated”. That is, one may always find a translated copy of a patch within some bounded distance from
that patch.

Any translationally repetitive tiling may be used to construct arbitrarily wide periodic strips. For any
width 𝑤, place a disk of diameter 𝑤 anywhere in the tiling. Now construct the smallest patch P of tiles
containing that disk, and find a nearby translated copy P′ of the patch. Finally, construct a new patch Q
containing P, P′, and all the tiles “between” them, namely the tiles that intersect an oriented rectangle of
width 𝑤 connecting the two disks. We may then build a periodic strip by placing repeated copies of Q,
aligning each one’s copy of P with its neighbour’s copy of P′ and eliminating duplicate tiles. It is possible
for this construction to fail if Q includes tiles that reach far around the boundaries of P or P′. This issue can
be avoided by constructing P and P′ based on disks of diameter 𝑤 + 𝑑, where 𝑑 is chosen so that every tile
shape is contained in a disk of diameter 𝑑.

In practice the construction need not be so generic. A more natural approach to be carried out by hand
is to generate a large patch of tiles and then identify a sub-patch P and its nearby translation P′ by eye.
As before, we now build a repeatable patch Q from P, P′, and the tiles between them. The benefit of this
approach is that we can choose patches to accomplish a design goal, like minimizing the period of the strip.
The narrow patches of tiles surrounding lines of local reflection symmetry in Figure 1 can be seen as an
example of this approach.

When a set of shapes is equipped with substitution rules [2], we can often take advantage of those rules
to construct periodic strips even more easily, in a “bottom-up” manner. Here we do not require the full power
of translational repetitivity a priori—it suffices for a sufficient number of substitutions to produce a patch
containing two tiles with the same orientation. Begin with any tile shape as a seed, and apply the substitution
rules until two such tiles 𝑇 and 𝑇 ′ appear. Draw a line segment parallel to the translation from 𝑇 to 𝑇 ′, with
endpoints in their interiors. Construct a patch Q consisting of all tiles that intersect this line segment. This
patch acts like Q above: we can repeat copies of it, overlapping each copy’s 𝑇 with its neighbour’s 𝑇 ′, to form
a strip. Moreover, in general we can apply any number of substitution steps to Q to obtain larger patches that
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repeat to form wider strips. This approach is used in the examples in the following section.
Translationally repetitive tilings are common, providing abundant source material for constructing pe-

riodic strips. For example, substitution rules normally produce repetitive tilings, and I am not aware of any
substitution tilings that are not also translationally repetitive. Indeed, the Radin and Wolff result can be re-
stricted to translation, so that if a set of shapes admits a tiling, the set must admit tilings that are translationally
repetitive.

Examples
In this section I show a variety of examples of periodic strips, to demonstrate the generality of the construction
and the expressive range they permit.

The chair rep-tile. I begin with the chair tile [3, Section 10.1] shown in Figure 3. The chair is a 4-rep-
tile: four copies of the tile may be arranged to create a scaled copy of the original (Figure 3, left). When this
rule is iterated it produces larger and larger patches, which in the limit define an attractive non-periodic tiling
of the plane. The chair’s substitution rule produces a patch containing two chairs in the same orientation,
shown shaded in the figure. We can therefore use the bottom-up construction from the previous section,
defining Q from those two tiles. Applying zero, one, or two rounds of substitution and placing overlapping
patches along a line produces the three friezes shown in Figure 3, right.

The constructions in this paper are overkill for the chair, given that it also tiles periodically. In fact, the
friezes shown here already appear as-is in the tiling produced via substitution. Still, the chair serves as an
accessible first example, and shows that true aperiodicity is not a requirement for these constructions.

Figure 3: The chair rep-tile. A substitution rule (left) expresses a scaled-up chair as the union of four
chairs. The shaded chairs can serve as the basis for constructing periodic strips (right).

Figure 4: The substitution rule in the upper left defines the pinwheel tiling. The dark grey and blue triangles
can be used as the basis for constructing periodic strips of different widths (right and bottom).
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Figure 5: The substitution rules for the Ammann-Beenker tiling (left). When iterated three times, these
rules produce a patch containing two squares of the same orientation (highlighted in yellow),

which can be used to define a sub-patch (outlined in bold) for constructing periodic strips.

Figure 6: Periodic strips constructed from the patch in Figure 5 after zero, one, or two substitution steps.

The pinwheel tiling. The Conway-Radin pinwheel tiling [6] is a 5-rep-tile based on a right-angle triangle
with side lengths 1, 2, and

√
5. Pinwheel tilings include tiles in infinitely many orientations. Nevertheless,

the substitution rule produces two tiles in the same orientation, shown in dark grey in Figure 4. Every line
segment connecting the interiors of those tiles passes through the two blue tiles. Here, then, the patch Q
will contain four tiles. The figure shows overlapping copies of Q after zero, one, and two substitution steps.
Although these strips repeat, they retain the somewhat chaotic appearance of the pinwheel tiling, which may
be more interesting than simpler strips based on periodic tilings by this triangle.

The Ammann-Beenker tiling. The Ammann-Beenker tiling [3, Section 10.4] has two prototiles: a
square and a 45◦ rhomb. It is a kind of analogue of Penrose rhombs, with fourfold local rotational symmetry
rather than fivefold. The tiling can be constructed using substitution rules based on a rhomb and a half-square
(Figure 5). The substitutions preserve a complex set of matching rules visualized by markings on the tiles
and always pair half-squares into full squares.

To construct periodic strips I applied three rounds of substitution to a half-square, producing a patch in
which two full squares and their markings appear in the same orientation for the first time. These squares
are shown highlighted in yellow in Figure 5, right. The line segment connecting the centres of these squares
comes into contact with all the other rhombs and squares contained within the bold outline, yielding a patch
Q that can repeat. Figure 6 shows strips made from copies of Q after zero, one, and two substitutions. Note
that the strips are all compatible with the markings that express the matching rules.
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Figure 7: Periodic strips based on the hat aperiodic monotile. The H7/H8 substitution rules (a) can be
used to construct patches of tiles. A naive repetition that starts with a row of hats (b), to which

the H8 rule applies, produces strips that do not grow ever wider. This problem can be avoided by
starting with overlapping hats (c) or a row of two-hat compounds (d).

Figure 8: A roll of transparent tape printed with a frieze of hats (left), applied to a drinking glass (right).
Design and photographs by Yoshiaki Araki.
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Figure 9: Periodic strips based on substitution rules for Spectres and Mystics (top), and drawn using copies
of Tile(1, 1).

The hat. The hat [8] is a recently discovered aperiodic monotile: a shape that admits only non-periodic
tilings, with no special matching rules needed. The “H7/H8” substitution rules [8, Figure 2.11], shown in
Figure 7a, offer a convenient basis for constructing periodic strips, with some caveats. The H8 substitution
rule produces a patch with two adjacent hats in the same orientation. However, if we repeatedly perform
substitution on a row of hats stacked this way, the resulting strip acquires deep concavities that prevent it
from getting wider (Figure 7b). One workaround is to start with a base patch Q that contains overlapping tiles
(Figure 7c); the overlaps resolve after a single substitution. It is also possible to avoid this problem by starting
with the two-hat cluster that drives the H7 rule (Figure 7d). Yoshiaki Araki has already used a periodic strip
of hats as a decoration for a drinking glass (Figure 8).

The Spectre. Spectres are also aperiodic monotiles, discovered as an offshot of the hat, which admit
tilings with tiles of uniform handedness [9]. The polygon known as Tile(1, 1) admits equivalent tilings if we
artificially prohibit the mixture of left- and right-handed tiles in the same patch. These tilings can be defined
using a substitution system on tiles consisting of a single tile and a two-tile cluster called a Mystic (Figure 9,
top). As with the hat, these tilings contain adjacent copies of Tile(1, 1) in the same orientation, which can be
used to construct periodic strips (Figure 9).
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Discussion
The existence of periodic strips of any width for aperiodic tile sets is mathematically fascinating. Grünbaum
and Shephard proved that, under relatively mild conditions, if a tile set admits a tiling with any translation
symmetry, then it must also admit a periodic tiling [3, Theorem 3.7.1]. At first glance it would seem that if we
can construct periodic strips of any finite width, then in the limit as width increases we obtain a tiling of the
plane with global frieze symmetry, from which we can deduce the existence of a periodic tiling, even for an
aperiodic tile set! The need to avoid this apparent contradiction allows us to conclude that as we build strips
of increasing widths, their periods must also grow without bound. That way, in the limit the period goes to
infinity along with the width, at which point the illusion of a tiling with frieze symmetry evaporates.

The possibility of constructing periodic strips from aperiodic tile sets is not entirely new. Kimberly-
Clark’s ill-fated toilet paper experiment provides real-world evidence of this fact. Furthermore, the existence
of periodic strips of all widths is implicit in the construction used by Dworkin and Shieh to prove the existence
of their “deceptions” [1]. The present paper provides a useful addition to the literature by highlighting periodic
strips in isolation, giving a few simple ways to construct them, and demonstrating the process with many
examples.
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