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Abstract

The Kolakoski sequence is a self-generating sequence consisting of 1’s and 2’s only. In addition to the several
visualizations of this sequence known, in this paper, a representation is presented illustrating different properties of
the Kolakoski sequence and of its generalizations by placing the sequence elements on a spiral.

The Kolakoski Sequence

Visualizations of integer sequences such as the Fibonacci or the Recamén sequence using different tools like
color or geometric realizations regularly catch the attention of a broad audience. For visualizations of a
wide selection of integer sequences, see [5]. This paper focuses on a self-generating integer sequence on the
alphabet {1, 2}, appearing as A000002 in [3]. Let n € N, then the sequence k(n) is defined as follows:

* the sequence k(n) consists of 1’s and 2’s only,
e k(1)=1,
¢ k(n) is the length of the n-th run.

A run is a finite part of the sequence consisting of consecutive equal elements. The terms of k(n) are
predicted by the length of the runs as well as the run lengths of k(n) are predicted by the terms of k(n).
Hence, the sequence is a fractal one. By definition, the first run is of length 1 and consists of a single 1. It is
followed by the second run k(2) of length 2 which gives two consecutive 2’s (otherwise there would be three
consecutive 1’s). The next run of length k(3) consists of 1’s and is of length k(3) = 2 (Figure 1).

1 —-[1j2-1]2 [ —>[122] - [1]2 2] s 12201 |- (1221 |

— 12 2[1 1] =12 21 1] | |=[1]2 271 1]2] |- [1]2 2][1 1]2] | -

Figure 1: Construction of first six elements of the sequence. Each box shows a run, while the arrows below
the boxes indicate the run predicted by the element the arrow is coming from. Reversing the
arrows allows for a reconstruction of the box lengths from the sequence elements.

Therefore, the first 34 elements of this sequence are 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2, 1,2, 1,
1,2,1,2,2,1,1,2, 1, 1, 2, 1. Alternatively, one could choose k(1) = 2. Then the sequence would look the
same apart from the first missing element, i.e., the 1 listed in the definition.

In 1965, the American mathematician William George Kolakoski described this sequence, which was
later named Kolakoski sequence [6]. In fact, some authors refer to the Oldenburger-Kolakoski sequence
to remind the reader of Rufus Oldenburger, an American mathematician who described this sequence in
1939 [4]. It is still an unsolved problem whether the density of 1’s is equal to % The Czech mathematician
and computer scientist Vaclav Chvétal showed that the density of 1’s is less than 0.50084 [2].
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Figure 2: From left to right: distribution of elements on a spiral [7]; distribution of elements on an
Archimedean spiral; 1 and 2 connected to predicting element and to predicted elements.

Placing the Sequence Elements on a Spiral

Each element appearing in k() knows who predicted it and who it predicts. To illustrate these connections,
the elements of k(n) are distributed on a spiral such that each winding contains the elements predicted by
those placed on the previous winding. The following parameterization serves as starting point

(ig;) =al(t)- (Z?IT((IIZ((;)))) ) , where a, b are monotonic functions.
The function a serves as the radius function while b defines the angular distribution. For some con-
stant C € R\ {0}, a(t) = C - b(t) gives an Archimedean spiral. In Figure 2 leftmost, the distribution of
points is chosen such that each 2 divides the corresponding section of the following winding in two parts of
equal length, indicated by e. Runs are separated by |. Further, one can observe that the elements on each
winding are placed irregularly on the spiral. From now on, for higher regularity, the elements k(n) are placed
at (x(n), y(n))T. If the density of 1’s in the sequence is %, then the number of predicted elements is % the
number of predicting elements and grows exponentially, on average. With a distribution on an Archimedean
spiral, the angles between different branches get more acute with increasing number of windings (Figure 3).
A suitable choice for a and b to show the entire sequence on a (non-Archimedean) spiral bounded by a circular
region and to distribute the elements without intersecting connections is for ¢t > 0
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Figure 3: From left to right: elements placed on a spiral with a(t) = b(t) = bs(t); angles getting more acute
towards the outer windings; on a spiral with a(t) = as(t), b(t) = bs(t), see Equation 1, elements
with connecting line segments.
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Visualizing the Kolakoski Sequence

Artistic Realization

As indicated in Figure 3, the spiral that the elements of the Kolakoski sequence are placed on serves as
a path along which the elements can be enumerated in order of appearance. For n > 2, fix an arbitrary
element e on the spiral. The turquoise line segments in Figure 2 connect the element e with its predicting
element and the one or two elements it predicts. Hence the Kolakoski sequence can be read off from the
graphic representations shown in Figure 2 examplary. The number of turquoise line segments incident to e
corresponds to the predicting element plus the number of predicted elements. Hence, for k(n) as defined in
the very beginning, there are either two or three such line segments, where two line segments correspond to
e being a 1 while three line segments corresond to e being a 2.

The handmade artworks shown in Figure 4 present a tree-like realization of the Kolakoski sequence.
The connection graph shown in turquois narrowing towards the bounding circle is called tree-like since the
self-reference indicated in Figure 1 forms a loop placed at the center of the artwork. The self-predicting 1 in
the beginning was omitted to keep the tree-like structure connected. The vertices of the connection graph are
omitted to emphasize the tree-like structure and in order to still be able to retrace the connections between the
single branches the spiral shown in dark blue is maintained. In total, two colors were used for the realization
shown in Figure 4. The chosen turquois and dark blue contrast well, also with the ivory-colored background.
The reduced color palette does not distract from the abstract and detailed structure displayed in the artwork.

In the artwork shown on the right hand side in Figure 4, the tree-like structure is colored with respect
to the lengths of paths connecting two branch points. The shortest paths connect two 2’s directly, shown in
light blue, while the path segment belonging to the longest path in the depicted section consists of eleven
consecutive 1’s, shown in dark violet in lower right. Hence, eleven different colors were chosen in total. The
color palette used here consists of shades of blue and green mainly, to replenish the colors used in the artwork
created first and in order to give the result a more fluid appearance. While it is clear from the definition that
there are paths consisting of 2’s only of infinite length, it is not known whether this is true for the 1’s as well.

Figure 4: Left: artwork by Ulrich Reitebuch, acrylic paint on plywood, 42.4 cm X 42.4 cm, 2022, showing
the Kolakoski sequence visualized as a tree-like structure under a spiral. Right: artwork by
Henriette-Sophie Lipschiitz, crayon on plywood, 42.5 cm x 42.5 cm, 2023, showing paths in the
tree-like visualization of the Kolakoski sequence colored by length.
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The Kolakoski sequence can be generalized by choosing numbers different from 1 and 2 or a different amount
of numbers to determine the lengths of runs and the elements of the sequence. The definition given in the
beginning uses the numbers 1 and 2. This original definition is sometimes denoted by Kol(1,2). Similar
to this definition, one can define generalized Kolakoski sequences on three or four elements. A detailed
description of specific examples is provided by the OEIS [3], for example sequences A064353, A071820,
A079729, and A079730.

In Figure 5, four generalized Kolakoski sequences are shown in a representation similar to the one
depicted in Figure 4. The radius function in Equation 1 was generalized to a(t) = ﬁ, cqa € R, to create

the images shown in Figure 5. Further, the angle distribution was adapt?c% to handle the changed number of
log(t
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predicted elements. Hence, the function b is generalized to b(r) = Zﬂm, cp € Roj.
7 =N N
— i
/ NN
i CNY L)
( 0 ,;f_;—." ¥ ;
§§\‘ Al /;;;/7 )
SIS (e
Nlme 2,72 R/ ==
2P ;‘_—_;k@l;w ] 77
22l T I=10N 7 /\ f
AN WU\
"'n\“\\‘,,}y[/:aeﬂ’“ NN

\\\\‘Q\\\Q\\\\\\\\

AN

Figure 5: Shown are four generalized Kolakoski sequences for different run lengths. From left to right:
Kol(1,3) ¢, =20, and ¢, = 2.2055694; Kol(2,3), ¢, = 24, and ¢, = 2.5; Kol(1,2,3), c, = 32,
and cp = 2; Kol(1,2,3,4), c, =24, and ¢, = 2.5. The exact values of the cp’s are unknown
except in the Kol(1,3) case [1]. Hence the values mentioned are guesses.

Summary and Conclusion

In this paper, already existing visualizations of the Kolakoski sequence inspired a different representation
which illustrates the connections between the elements of the sequence in a captivating way. The fractal-like
structure achieved gives rise to further questions such as the distribution of line segments of specific lengths
connecting only elements which are represented by a 1.
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