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Abstract

This paper reports on some surprising patterns that emerge by obeying a simple mathematical rule, borrowed from
knot theory, for tricoloring a square weave of “ribbon” or “thread,” starting from specified “fringe” conditions across
the top and left edges. We have no proofs as yet; indeed, it’s a challenge just to describe what we see in full
mathematical detail. But clear hints of Sierpinski arise . . .

A Knotty Question Looms

A useful technique in knot theory is to tricolor the connected arcs (“strands”) that constitute the two-
dimensional projection of a knot. The coloring rule requires that either one or three colors meet at each
crossing: the two “underpassing” strands either match the overpassing strand’s color or all three strands have
different colors, as indicated in Figure 1 for a slightly tweaked trefoil knot. Among other nice properties,
tricolorability is an indicator that a knot cannot be “unknotted” [1, pp. 22-27].

It occurred to one of the authors (BC) to see what would happen if the same rule were applied to the

segments of a “basket weave,” starting from a prespecified set of colors for the top and left fringes of the
vertical “warp” and horizontal “weft,” imagined to continue infinitely down and to the right.
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Figure 1: A tricolored trefoil knot (left). In a basket weave (right), once the fringe strands (thicker lines)
are assigned colors, the tricoloring rule determines all other colors.

He began by simply cycling Red, Blue, and Yellow along each fringe. He then started carefully coloring the
adjacent threads one by one, aware that any errors would propagate throughout the weave. He expected the
result to be similarly simple, cyclic, and therefore dull, both mathematically and aesthetically.

He was wrong.
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BC’s hand-drawn experiment (Figure 2) on a
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result looked more random than patterned, includ-
ing an unexpected blob of solid blue occurring fairly
near the upper left hand corner. But clearly nothing
truly random is going on here, since the prespecifi-
cation of the fringes is simply cyclic and the rule for
propagating colors is rigidly deterministic. Equally
obviously, a 13 x 19 “carpet” is still fairly small;
perhaps a larger grid would reveal some underlying
simple, cyclic pattern.

Carpet Cleaning

Enter the second author (PZ), who enlisted Mathe-
matica to do some industrial-strength weaving. PZ
made two notable changes. One is minor: He
changed Yellow to Green—which happens to ac-
cord with knot theorists’ convention for tricoloring.
The other is more substantial: Mainly for Mathemat-
ical convenience, he fattened BC’s threads into “rib-
bons,” to produce a basket weave, with square over-
crossings. While we remain agnostic as to the “best”
choice of colors (we defer to Albers [2] and other ex-
perts on such matters), the threads-to-ribbons trans-

Figure 2: Hand-crafted carpet with cyclic fringe

formation turns out to have certain advantages.

The Mathematica-zation of a tricolored basket weave with prespecified fringes along the top and left
goes as follows. First we associate the colors Red, Blue, Green with the numbers 0, 1, and 2 mod 3. Then,
for any particular n, say n = 27, we create an (n + 2) X (n + 2) “checkerboard” of small squares, with
rows numbered —1 to n, reading down, and columns —1 to n reading from left to right. Little squares get
coordinates in the obvious way: (11,23) is in the row numbered 11 and the column numbered 23. Next, we
color (i.e., assign numbers ¢; ; mod 3 to) the first two squares of the leftmost and topmost rows and columns.
This represents our prespecified “fringe” conditions in a way that makes it easy to reformulate the tricoloring
rule for the rest of the carpet (i, j > 1), which boils down to this Mathematica-friendly formula:

- —Ci-1,j — Ci—2,; mod 3 ifi+ jiseven
i - . . . .
/ —Cij-1 —¢i,j—> mod 3 ifi+ jisodd

This formula encodes our desired coloring rule in that each square’s color is determined by two immediate
neighbors: “from above” for “even” squares (the black ones on a checkerboard, say, which correspond to
“warp” ribbons) and “from the left” for “odd” (or “weft”) squares. Note that ¢; ; is chosen so that the three
numbers sum to 0 mod 3. This agrees with our tricoloring rule: three numbers sum to 0 mod 3 if and only if
they are all the same mod 3 or are all different mod 3.

Perhaps unsurprisingly (but nonetheless to the authors’ surprise), powers of 3 seem to play a key role in
the patterns that emerge. Here’s what Mathematica wove from BC’s cyclic fringe conditions for n X n square
carpets with n = 27, 81, 243, and 729:
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Figure 3: Cyclic fringe conditions at scales 27 x 27, 81 X 81, 243 x 243, and 729 x 729. (Black portions of
the fringe indicate squares that play no role in tricoloring the interior.)

The patterns in Figure 3 suggest that the cyclic Red/Blue/Green fringes produce a Sierpinski-esque carpet.
Most prominently, the small blob of solid blue seen in Figure 2 establishes itself at larger scales as a distinctive
square of some regular pattern occupying (roughly) the middle ninth of each 3" x 3" square carpet, with
similar regularly patterned squares occupying the middle ninths of the eight blocks surrounding it. Some of
the distinctive squares are solid blue; others are multi-colored stripes in horizontal, vertical, and diagonal
directions. In particular, a solid blue middle ninth seems to occur for even powers of 3. None of this is
rigorously certain, but we would be surprised if the observed patterns don’t persist.

Loose Ends

One thing we can say with certainty is that if all fringes have only one color, say Green, then the entire carpet
will be Green. Indeed, this modest observation prompted an experiment that offers a tantalizing glimpse
at underlying structure: Starting from all-Green fringes, we make two tiny tweaks (or, arguably, mistakes),
recoloring the first warp and the first weft fringe elements Red. Which carpet squares, we wondered, will
change color from their original Green? With Purple (more or less the sum of Blue and Red) indicating
squares that change color, and White indicating squares that don’t, we get the striking Sierpinski-esque
“difference carpet” shown at two scales in Figure 4.

379



Cipra and Zorn

Figure 4: Sierpinski-esque difference carpets at scales 81 X 81 and 243 x 243.

We don’t know where this Sierpinskiosity is coming from, much less how to prove it. Indeed, it’s unclear
how to describe precisely the pattern in Figure 4; there’s more going on than a simple removal of middle
ninths. We do know that the linearity of the formula for the colors ¢; ; means that the propagation of changes
is the same for any fringe that’s tweaked in the same way. Even if the fringe is colored randomly, for which
we expect—and get—a random-looking carpet, adding 1 mod 3 to the first warp and weft thread, while still
producing a random-looking carpet, does so with the same Sierpinski-esque difference, as shown at scale
81 x 81 in Figure 5 below.

Figure 5: A random fringe produces a random carpet (left). Tweaking the first warp and weft threads leaves
the carpet looking random (middle), but the “difference” carpet is the same as in Figure 4.

We have tried other experiments as well, such as changing just one fringe element instead of two, with similar
Sierpinski-esque results. Much remains to be explored, both artistically and mathematically.
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