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Abstract
In this paper we present a method for constructing large, stuffed, machine-knit models of knots and links. Our
approach is based on the minimum ropelength of knots, a measure of the minimum amount of rope needed to tie
a given knot. We combine known mathematical bounds for minimum ropelength with physical measurements and
knit gauge to determine appropriate row counts for creating large-scale stuffed models of particular knots and links
on a flatbed knitting machine. The resulting soft sculptures invite tactile, playful exploration of knotted and linked
mathematical forms, and are surprisingly huggable.

Motivation and Methodology

The theoretical mathematical study of knots has been an active area of research for the past century. For
much, much longer, artists have incorporated motifs and forms of knots into their work; for example in the
Book of Kells, Chinese knot tying, and Islamic art. Artists typically create knots using drawings, carvings,
and rope, and mathematicians illustrate knots with projection diagrams, wire models, and more recently, 3D
printing. We would like to build larger knot models using stuffed knit tubes. The stretchable nature of knitting
will allow the material to follow the curvature of the knot. However, it is significantly time-consuming to
knit at scale, especially for knot models which pack a lot of length into a small volume. We will rely on the
production capacity of domestic flatbed knitting machines to produce knit tubes for this work.

Loosely speaking, the ropelength of a knot is a measure of the length of the knot when traced out by
a tube of unit radius. For a tubular knot with a non-unit radius, the ropelength is the length of the knot
divided by its radius [3]. The idea of this work is to compare the measurements of a simple prototype
knit knot to its known ropelength upper bound, and then apply that knowledge in reverse to establish a
method for determining row counts for more complex knots and links. Our goal is to provide a repeatable
method for creating large-scale soft knit sculptures of knots in approximately “ideal” minimum-ropelength
conformations such as those shown in Figure 1 (images from Wikipedia commons and [4]).

Figure 1: Ideal minimum-ropelength conformations of the figure-eight knot, the knot 818, and the
Borromean rings, respectively, together with their standard mathematical diagrams.

From Ropelength to Row Count

Upper ropelength bounds for low-crossing knots and links are already known in the mathematical literature.
For example, Rawdon [5] includes computed ropelength upper bounds for knots through 9 crossings showing
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that the ropelength of the figure-eight knot 41 is bounded above by 42.33, and that the ropelength of the knot
known as 818 is bounded above by 75.44. In Cantarella [3] the three-component Borromean rings known as
63

2 are illustrated with a ropelength of 58.05. Slightly sharper upper bounds for these knots can also be found
in [1] and [2]. Mathematically proving these bounds is a very hard problem that we will not tackle here. In
this work we will utilize known ropelength bounds to approximate rough construction lengths for our soft
knot sculptures, but will not be concerned with precise minimality.

As an initial prototype we machine knitted and stuffed the figure-eight knot; see the photograph in
Figure 2. This prototype was used as the basis for all physical measurements and the standard for future
knit knots. The knit tube was 39 stitches around and 314 rows long, with a knit gauge of 8 stitches and
11 rows per 2”x2” square, un-stuffed tube circumference of 39 · 2/8 = 9.75”, and un-stuffed flat length of
314 · 2/11 = 57”. Note that nearly five feet of knit tubing was needed to construct even this simple knot!

Figure 2: Flat tube knitting sample and completed figure-eight knit knot, banana for scale.

Of course, the gauge and length measurements changed after the tube was stuffed with Poly-fil fiber and bent
into the curve of the figure-eight knot. The stuffed circumference averaged about 10.5”, yielding an average
stuffed radius of 10.5/(2𝜋) = 1.67”. The length of the stuffed curve was more difficult to measure, for two
reasons. First, it is not possible to measure along the center of the tubular path. Second, stitches stretch out
along the outside curves of the stuffed knot and become compactified along the insides of the curves. By
measuring along the least stretched or compacted stitches at the “sides” of the stuffed tubes, we estimated a
stuffed row-gauge ratio of 8.5 rows per 2”, and thus a length of 314 · 2/8.5 = 73.88”.

With these measurements we can approximate the “soft ropelength” of the figure-eight knot to be
73.88/1.67 = 44.24. Note that this is very close to Rawdon’s upper bound of 42.33. In fact, this is a scaleup
of just 4.5 percent over Rawdon’s value. If we assume that this is a consistent relaxing factor of 1.045 across
knot types, then we can take ropelength upper bounds for more complicated knots and run the calculations
above in reverse, thereby estimating the number of rows needed to create long enough tube to successfully
form ideal stuffed models of those knots. By increasing or decreasing the relaxing factor we can also create
tighter or looser knots. We can summarize this process in the following straightforward theorem.

Theorem 1. Suppose 𝐾 is a knot with an upper ropelength bound 𝑅. Furthermore, suppose that machine,
yarn, and stuffing requirements result in stuffed radius 𝑟 and stuffed row-gauge ratio 𝜌. Then the number of
knit rows ℛ needed to construct an ideal stuffed knot conformation of 𝐾 with relaxing factor 𝔯 is

ℛ = 𝑅 · 𝑟 · 𝔯 · 𝜌.

For example, our figure-eight knit knot prototype calculations had relaxing factor 𝔯 = 1.045, stuffed
radius 𝑟 = 1.67”, and stuffed row-gauge ratio 𝜌 = 8.5/2. With the ropelength upper bound from [5],
Theorem 1 correctly predicts

44.24 · 1.67 · 1.045 · (8.5/2) ≈ 314 rows.
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Now let’s look at another knot and see what Theorem 1 predicts. The knot 818 shown in Figure 1 has a known
ropelength upper bound of 75.44 in [5]. Repeating the same values for relaxing factor, stuffed radius, and
stuffed row-gauge ratio, we created the “knit knot” model of 818 shown in Figure 3 from a long knit tube with

75.44 · 1.67 · 1.045 · (8.5/2) ≈ 560 rows.

Notice that to repeat the same style of knit knots as our prototype with the same machine, needles, and
yarn (Loops & Threads “Impeccable Speckle”), we will always have the same 𝔯, 𝑟 , and 𝜌, and therefore we
can just multiply any ropelength bound 𝑅 by 1.67 · 1.045 · (8.5/2) ≈ 7.417 to obtain an ideal row count ℛ.
The purpose of Theorem 1 is to generalize the process for other yarns, machines, and styles.

Figure 3: Work in progress and completed 818 knit knot, banana and figure-eight knot for scale.

How to Make Your Own

Hand knitting 314 rows, or worse, 560 rows, takes a long time. In contrast, each row takes only moments to
knit on a knitting machine...if the machine is operational and working. There are myriad issues to keep track
of while machine knitting, such as yarn tension, weight distribution, ribber bed racking and alignment, needle
condition, carriage lubrication, tension mast setup, etc. If any one of these issues causes a problem then the
carriage could unexpectedly catch, stitches could be lost, or the work could fall off the machine entirely in
the middle of a row. The works in this paper were created using vintage equipment from the 1980s, namely
a Brother KH-260 knitting machine with KR-260 ribber bed. A lot goes wrong with these machines. But,
once you get the stars to align, the flat tubes knit up much faster than one could produce with hand knitting.

On a flatbed knitting machine the active stitches of the work are held on hooked needles, one for each
stitch; yarn is fed through a carriage which knits each stitch as it passes from one side to the other. A second
bed called a “ribber” allows for circular knitting of flat tubes, such as we need for this project. Figure 4
illustrates the knitting machine process in action and the resulting flat tubes being stitched together by hand.

Swatching. As every knitter knows, swatching is not optional. Whether knitting by hand or by machine, you
should knit a short sample tube to obtain measurements for stuffed radius 𝑟 and stuffed row-gauge ratio 𝜌,
and then apply Theorem 1 with your desired relaxing factor 𝔯 to obtain the row count ℛ.

Hand knitting instructions. Cast on your preferred number of stitches onto circular or double pointed
needles in waste yarn. Join, switch to main yarn, and knit ℛ rows in the round. Find somewhere comfortable
to do this and maybe something to binge-watch because it is going to take a long time! Switch to waste yarn
and knit one or two rounds; no need to cast off.

Machine knitting instructions. On a double-bed machine, set to pitch H3 and pull out some number 𝑛 of
main bed needles and 𝑛 − 1 on the ribber. Cast on in waste yarn, hang comb and weights, and switch to main
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Figure 4: Knitting the work on a Brother KH-260 knitting machine with KR-260 ribber bed, and grafting
separate pieces together

yarn and desired tension. Set main bed to slip L and ribber to slip R, and knit in the round for ℛ rounds or
until a problem happens and the knitting falls off or jams unexpectedly. If you make it to the end then knit a
few rows of waste yarn before dropping the work from the machine. For more detailed instructions see [6].

Finishing. If you are knitting by machine, then due to various disasters you may in fact have produced a
lot of shorter tubes instead of one long tube; graft these together with kitchener stitch before continuing (see
Figure 4). Stuff the knit tube with filling, form into the desired shape (such as one of the minimized knot
conformations shown in [4]), graft ends together, and weave in ends.

Summary and Conclusions

Viewing a small diagram or physical model of a knot can be limiting in terms of fully grasping its complexity
and beauty. By creating large-scale soft sculptures, we are able to invite people to physically engage with
mathematical knots and links. The friendly, huggable nature of knit knots invites exploration and play,
encouraging deeper engagement with the mathematical structure of knots and links. This current work will
extend to include stuffed knit models of the Borromean rings and other interesting knots and links. Future
work may include (1) using the patterning capabilities of punch card knitting machines to create stuffed
knit torus models with embedded illustrations of torus knots and (2) producing even larger knot models to
encourage interactive play and exploration.
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