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Abstract

What makes a disentanglement puzzle a puzzle? In this paper, we explore this question from a geometric perspective.
We study a set of wire puzzles—disentanglement puzzles consisting of two pieces formed by bending thick metal
wire—and wire non-puzzles, contrast their geometric properties both in 3D space and in their 6D configuration space,
and propose several qualitative and quantitative measures of how “puzzly” a wire puzzle is.

Introduction

Rigid disentanglement puzzles are fascinating brainteasers consisting of two or
more rigid (usually metal) pieces. The puzzle begins in a tangled state, and the
goal is to separate the pieces through a sequence of rigid motions; interest in
these puzzles comes from the juxtaposition of the small number of pieces and
the complex, unintuitive steps needed to disentangle them. The prototypical
rigid disentanglement puzzle is the alpha puzzle, shown in Figure 1. Separating
its two pieces requires a twist after aligning the gaps in each loop; despite the
geometric simplicity of the pieces, the required twist motion is counter-intuitive.
The same is not true for, e.g., separating a nut screwed onto a bolt: unscrewing
the nut requires a long, twisty screw motion, but few humans would characterize Figure 1: Alpha Puzzle
this process as solving a puzzle.
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Figure 2: A Collection of Digitized Disentanglement Puzzles.
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Figure 3: Example Non-puzzle Problems

What makes the alpha puzzle a puzzle, and the nut-and-bolt a non-puzzle? In this paper, we explore this
question from a geometric perspective. We study a set of wire puzzles—disentanglement puzzles consisting of
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two pieces formed by bending thick metal wire, see Figure 2—and a set of wire non-puzzles (Figure 3), contrast
their geometric properties both in 3D space and in their 6D configuration space, and propose several qualitative
and quantitative measures of how “puzzly” a wire puzzle is. In addition to broadening our understanding
of the nature of challenging motion planning tasks like rigid puzzle disassembly, our contributions lay the
groundwork for future research on optimizing puzzle difficulty or improving the performance of motion
planning algorithms on challenging disassembly tasks.

Background

Solving rigid disentanglement puzzles is a special case of motion planning, a problem that has received
widespread attention across robotics, computer graphics, computational geometry, and mathematics thanks
to its applications to robot navigation and manipulation tasks. LaValle’s textbook [5] provides an excellent
overview of this area. In motion planning problems, the physical space where the moving object(s) and
obstacles reside is called the workspace and the space of all transformations of the moving objects (their
configuration or state) is the configuration space or C-space. For the wire puzzles we consider in this paper,
the workspace is R3. We may assume, without loss of generality, that one of the two wire pieces remains
fixed in space while solving the puzzle; the C-space for wire puzzles is therefore SE(3) = R* x SO(3),
the six-dimensional space of rigid motions of the mover (with three location degrees of freedom, and three
degrees of freedom denoting orientation). The C-space can be partitioned into two disjoint subsets, Cgree and
Cobs, the set of collision-free and colliding states respectively, with boundary 0Cr. between them. Solving
a wire puzzle entails finding a path that lies entirely within Cg.. and connects a given point (the start state)
to any point in Cgee representing the two pieces having separated sufficiently far apart (the goal states).

Figure 4 illustrates these concepts for a 2D motion
planning problem. The workspace, on the left, con-
tains a small red rectangular body (the moving piece)
trapped within a larger, fixed cyan body. The C-space
of the red rectangle is three-dimensional, with each
configuration (x, y, #) specifying its position and ori-
entation. Cpee can be visualized as a volume! enclosed
by dCree (On the right), where we have drawn 6 as the —
vertical axis. Each of the two “towers” corresponds to
the red rectangle moving freely within one of the two
empty chambers on the left. The two thin “tunnels” (3 )
connecting these towers are the configurations where
the rectangle, oriented at either 6 = 0° or 180°, slips  Figure 4: 2D Workspace and dCee in 3D C-space
through the gap between the chambers. Such tunnels
are major challenges for motion planning, as a human or algorithm trying to explore Cfee must first find their
entrances, and then navigate through them.

Related Work

Whereas most motion planning research focuses on the case of many agents navigating around a relatively
sparse set of obstacles, disentanglement puzzles consist of only a few moving parts, but their space of motions
is carefully designed to be adversarially difficult to navigate. Consequently most practical state-of-the-art
motion planning algorithms struggle to solve even simple disentanglement puzzles, such as those shown in
Figure 2. The most successful algorithms use heuristics to find and navigate the narrow tunnels. Zhang et
al. [11] and D-plan [10] use global workspace features of the piece geometry to predict where tunnels are
likely to be.

ICiree 1s periodic along the rotational axis (blue), and hence the top of each “tower” is connected to its bottom.
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There has also been recent interest in the inverse problem of designing puzzles [9], including sliding puzzles
made of interlocking pieces [1], Rubik’s-cube-type twisting puzzles [7], dissection puzzles [8], and 3D jigsaw
puzzles [2]. For some of these puzzle types, there is a straightforward quantitative notion of difficulty (such
as the number of sliding moves required to solve interlocking burr puzzles) which can be optimized to create
challenging puzzles. To our knowledge, however, there is no previous work on designing challenging wire
puzzles or analyzing what makes a wire puzzle a puzzle.

Overview

We study a set of wire puzzles and non-puzzles. The puzzles (originally from Teenitor’s “10-piece Metal Iron
Brain Teaser IQ Test Assembly & Disentanglement Puzzle Toy” box set and digitized by Zhang et al. [11])
are shown in Figure 2. We designed several non-puzzles ourselves, shown in Figure 3.

* In four pipes V1, one piece starts nestled within the other, but easily slips through any of several gaps.

* In four pipes V2, the red piece is larger and now no longer fits through the cyan piece’s gaps. However,
disentanglement requires only translating the red piece along a straight path.

* Curved pipes is a slightly more complex variant of the previous designs: the red piece must slide on a
curved trajectory to escape. The puzzle is still trivial, however, since the red piece is constrained from
moving in any way other than along the solution path.

 Spiral with lid is a wire-puzzle analogue of a nut and bolt; solving this puzzle requires a long but
obvious screw motion to escape the spiral. (Spiral shows the same non-puzzle with the endcaps
removed, revealing the moving red piece and interior geometry of the spiral.)

* Wide alpha-z is a modified version of the true alpha-z puzzle: the gap formed by each piece’s loop
has been widened to allow the pieces to slip through each other without performing the tricky twisting
motion required originally.

Indicators of Puzzly-ness

As discussed above, motion planning problems that involve navigating through regions of Cge. that look like
narrow tunnels are particularly challenging, and indeed all of the puzzles shown in Figure 2 require passing
through at least one narrow tunnel to solve. But tunnels alone are not sufficient to make a puzzle: curved
pipes, for example, is one long tunnel (the red piece is constrained to slide along a thin one-dimensional tube
in C-space) but straightforward to solve. Rather, a puzzle is difficult if the solution path requires passing
through a sequence of tunnels separated by bubbles: regions where Cge. €xpands to have large diameter in
C-space. These bubbles correspond to configurations where the two puzzle pieces are loosely entangled, and
where the large amount of freedom in how to jiggle the pieces obfuscates the next move required (tunnel
to enter) to solve the puzzle. We hypothesize that looking for this funnel-bubble structure can effectively
discern puzzles from non-puzzles. Second, we observe from the solutions to the puzzles that they all involve
twisting moves that entwine segments of the two pieces around each other. We propose that absence of this
twistiness is a strong indicator of a non-puzzle.

Quantitative Approach

We propose two quantitative metrics for probing existence of tunnel-bubble structure (the visibility volume
and its anisotropic refinement, the explained variance ratio) and one for measuring twistiness (the Gauss
linking integral), which we describe below. For each puzzle, we first compute a solution to the puzzle
(using the algorithm of Zhang et al. [11]), and evaluate each metric at all times along the solution path.
The computed solution paths are not necessarily optimal (finding any solution is often challenge enough!);
instead our approach samples a “typical” path a solver might try (including dead ends and backtracking) and
the tunnel-bubble structure and twistiness encountered along the way.
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Visibility Volumes

In order to locate potential bubble-tunnel structures along a path in C-space, we introduce a metric called
visibility volume. Given a solution path y(¢) : [0, 1] — Cpree, the goal of this metric is to measure how much
“clearance” there is before hitting Cyps around each point on the path: large values indicate that the path is
moving through the interior of a bubble, and small values indicate a tunnel.

Given a point p = y(#p) € Ciee On the solution path and a tangent vector v = (Vyans, Vrot) t0 SE(3) at
p (representing a screw motion with velocity vy, and angular velocity vy of the moving piece), we define
the visibility distance of v to be

”V”vis = min (1a tcol) s

teol = inf {t| expp (1) € Cobs} ,

where? exp,(7v) is the configuration of the moving piece reached by starting at configuration p, rotating the
piece about the normalized axis Vo (in its body coordinates) by angle ¢||v,||, and then translating the piece
(in global coordinates) by #vi.ans. The visibility distance measures the first time 0 < #., < 1 along this screw
motion that the moving piece collides with the stationary piece, or 1 if no collision occurs.

Once the puzzle is solved and the two pieces are significantly separated, ||v||vis is equal to the maximum
value of 1 for every direction v. Before then, ||v||yis will be larger within bubbles, and smaller within tunnels
(except for very particular directions v that happen to align with the direction of the tunnel). This observation
motivates the visibility volume,

N
) 1
Vis(p) = 5 D Villvis. (1)
i=1

which averages the visibility distance of N random tangent directions v;. We sample v; by choosing a
translation vector uniformly at random from the sphere centered at 0 of radius dmax = 2(r1 + rp), where
r1, o are the radii of the bounding spheres around the two pieces, and the rotation axis-angle by sampling a
quaternion uniformly from the unit 4-ball. These choices guarantee that the visibility volume increases for
larger bubbles, and achieves its maximum value only once the puzzle is solved (since in a tangled state, it is
impossible to translate the moving piece by dnax Without causing a collision).

In bubbles, Equation (1) approximates the average visibility distance with samples; however in tunnels,
as mentioned above, most of the visibility distance is concentrated in a few tangent directions that correspond
to motion forward and backward through the tunnel. When calculating visibility volume on a segment of
the solution path with tangent vector vp,n, we augment the random samples in Equation (1) with random
perturbations of Vpa; each perturbation is a random rotation by up to 15 degrees of the translation direction
and rotation axis of Vyan. We use 4,096 random samples and 512 perturbations of vp,g for all of our
experiments, and weight each group separately to account for their differing density in the tangent space of
SE(3).

Explained Variance Ratio

Although the visibility volume is large in bubbles and small in tunnels, it is a crude instrument: the visibility
volume will be small even in regions of Cg.e that are not one-dimensional tunnels, but where only a few
directions of motion are constrained, such as the spiral non-puzzle.

2The exponential map expp(tv) computes the rigid motion you get by starting at p € SE(3) and moving along a geodesic (in this
case a screw motion) in the direction tv.
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We can refine the visibility volume measure Vis(p) by examining not just the average visibility distance of
tangent vectors at p, but also how the visibility distances are clustered in the tangent space. We quantify an
anisotropic generalization of Equation (1) by performing Weighted Tangent Principle Component Analysis
(WtPCA) [6], a.k.a. Principle Geodesic Analysis (PGA) [3], on the set of vectors || v;||visVi, where the samples
v; are the same as those used to compute Vis(p). We weight the random versus perturbed samples to account
for differing tangent space density, as above, and also weight the translation and rotation coordinates of each
sample so that the singular values corresponding to the six principal components are identical once the puzzle
is solved as the pieces well-separated.

Similar to the classical PCA, the explained variance of WtPCA can be defined as o = /1? /(N =1),
where A; are the singular values of the sample covariance matrix. Intuitively, the explained variances describe
the lengths of the principal axes of a “best-fit ellipse” to the geometry of Cge near p. Therefore the explained
variance ratios jij = o/ Z?: , 0 inform us of the anisotropy of Cfe near p. In a one-dimensional narrow
tunnel, we expect u; to be large and the other five explained variance ratios to be small. In a bubble, we
expect all explained variance ratios to be roughly equal.

Gauss Linking Integral

Finally, we propose a way to measure how twisted two wire puzzles are about each other. Given two closed
curves y1(s) and y;(s), the linking number is a topological invariant that measures how many times the
curves wind around each other. The linking number can be computed using the Gauss linking integral,

(1 x73) - (v1=7)
Gl =4 [ [ RIS @)
Y1 Yy ly1 = y2ll

For two curves that aren’t closed (such as for instance the centerlines of two entwined wire puzzles), we can
still compute the above integral as a (no longer integer) measure of how much the two curves twisting about
each other [4]. For puzzles, we expect the GLI to be large in the starting (tangled) state, to change as the two
pieces move relative to each other through the tunnel-bubble structure, and to end up zero after the puzzle is
solved. A GLI that stays small throughout the solution path suggests a non-puzzle.

Experiment Results

Figure 5 and 6 list the quantitative analysis results for puzzles and non-puzzles respectively. In each graph,
the top image plots the logarithm of the visibility volume and the Gauss linking integral, and the bottom
image shows the explained variance ratios of all six singular vectors from the WtPCA. The center image
visualizes the poses of pieces at different configurations along the solution path. The three images share the
same x-axis, which is normalized so that x = 0.8 is always considered as “solved” (for puzzles) or “separated”
(for non-puzzles). The grey areas in Figure 5 further mark the tunnel region located manually by humans.

Figure 5 shows the visibility volume can locate the bubble-tunnel structures pretty reliably. In all puzzles,
the visibility volume starts high and decreases to roughly 10~! times its initial value at known locations of
narrow tunnels along the solution path. Furthermore, for the claw puzzle the visibility volume identifies (via
a valley in the visibility volume plot around ¢ = 0.3) an additional narrow tunnel location that we did not
notice at first. A similar additional narrow tunnel identified by the visibility volume for the triangle puzzle
reveals a limitation of our analysis: the computed path y(¢) for this puzzle is not optimal, and goes into a
dead-end at ¢ = 0.3, then backs up and goes through another non-essential narrow tunnel (¢ = 4.5) before
solving the puzzle.

The explained variance ratio of alpha-z, double-alpha, claw, and triangle successfully locates low-
dimensional regions in Cgee at t = 0.4, t = 0.2,0.7, t = 0.35,0.75, and ¢ = 0.75 respectively. The alpha-g
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puzzle at t = 0.725 is an interesting case: the smaller ring of the red moving piece slips through the larger
ring of the teal fixed piece. The pieces lose degrees of freedom while their rings are nestled, as detected by
the explained variance ratios, though not enough to form a one-dimensional narrow tunnel. We also observed
that the first explained variance ratio increases for most puzzles when the moving pieces enter a large open
region in Cpee. The exit of a tunnel forms a mushroom-like shape that allows the moving piece to move
into the open space along several directions in SE(3) while limiting its movement in others. The explained
variances along different principle components of samples of this “mushroom” have an uneven distribution.

Comparing the puzzle plots to the corresponding plots for non-puzzles in Figure 6 partially verifies that
tunnel-bubble structure (especially as measured by visibility volume) and twistiness (as measured by GLI)
define a puzzle. The visibility volume, explained variance ratio, and GLI plots for most non-puzzles lack the
peaks and valleys seen in puzzles. One exception is the wide alpha-z: none of our metrics can differentiate
this non-puzzle from the original alpha-z puzzle. At¢ = 0.4 the red piece slips through a narrow gap between
the wires of the teal piece, without the unintuitive “twist”; visibility volume labels this region a tunnel,
suggesting additional criteria are needed to fully distinguish puzzles from non-puzzles.

Discussion and Future Directions

Our interest in distinguishing puzzles from non-puzzles stems from our desire to design new puzzles. We
believe that geometric features of the puzzle shapes and their C-space, such as visibility volume, visibility
volume shape, and GLI can be useful as objective functions in an optimization. One might also consider
puzzles with more than two pieces, requiring an analysis in a higher dimensional C-space. Finally, our current
measures cannot detect all differences between a puzzle and non-puzzle. In the future, more measures, like
the curvatures of the tunnel medial axis, could be tested to augment our current suite.
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