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Abstract

Symmetry is at the heart of much of mathematics, physics, and art. Traditional geometric symmetry groups are
defined in terms of isometries of the ambient space of a shape or pattern. If we slightly generalize this notion to
allow the isometries to operate on overlapping but non-identical metric spaces, we obtain what we call compound
symmetry groups. A natural example is that of the groups generated by discrete rotations of overlapping disks in the
plane. Investigation of these groups reveals a new family of fractals, as well as a rich structure that is intriguing both
mathematically and artistically. We report on our initial investigations.

Introduction

Symmetry is of fundamental importance in many disciplines of mathematics, from the fields of Galois theory,
to the automorphisms of abstract algebra, to the isometries of wallpaper patterns and crystals. In physics,
Noether’s theorem connects the symmetries of space and time with conservation laws. In art, subtleties of
degrees and kinds of symmetry arguably lie at the heart of what constitutes beauty.

Here we expand on the traditional notion of geometric symmetry, with mathematical and artistic con-
sequences, at least. The symmetry group of a shape or pattern is defined as the group of all isometries of
the ambient space that preserve that shape or pattern. Isometries may only be combined in so many ways
in any given metric space: there are (up to isomorphism) only 17 wallpaper groups, 7 frieze groups, 230
3-dimensional space groups, etc. We cannot have, for example, five-fold rotational symmetry in any repeating
pattern in the plane—though quasicrystals can approximate this [9].

(a)
(b)

Figure 1: (a) Image of a compound symmetry group with 3-fold and 5-fold symmetries, (b) the � = 5 fractal.
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By considering groups generated by isometries of metric subspaces that are not identical, but instead overlap,
we can probe some of these “forbidden” symmetries in new ways. A partial image of one of these “compound
symmetry groups” is shown in Figure 1(a). Locally, this image contains regions of three-fold and five-fold
symmetry—necessarily broken on larger scales—as well as combinations such as 15-fold.1 A new family of
fractals is generated by these groups at critical parameter values, as shown in Figure 1(b).

In this paper we explore the characteristics of these new kinds of symmetry group. Of particular
importance will be determining the parameter values at which the groups become infinite, exploring the
underlying dynamics, and also understanding the characteristic fractals, or sometimes pseudofractals, that
appear precisely at these transitions.

Figure 2: The Gizmo Gears puzzle.

This work began with the study of the behavior of certain “circle puzzles” [1, 2]—especially Gizmo Gears
[7], shown in Figure 2, designed by Doug Engel. A two-disk compound symmetry group is the mathematical
generalization of a circle puzzle. The study of the group structure of circle puzzles seems to have been
initiated in [6]; related but simpler “wheel puzzles” are analyzed in [10].

Definitions and Basic Properties of Two-Disk Systems

A compound symmetry group is a group generated by a set of isometries of subspaces of a metric space.
Here we will primarily be concerned with compound symmetry groups generated by discrete rotations

of two overlapping closed disks in the Euclidean plane. We sometimes call these two-disk systems. Without
loss of generality, let the two disks be centered at (−1, 0) and (1, 0). Denote the left disk’s radius as 𝑟1, and
the right disk’s as 𝑟2. The generators 𝑎, 𝑏 are clockwise rotations of the left disk by 2𝜋/𝑛1, and of the right
disk by 2𝜋/𝑛2. The group operation is function composition2: 𝑓 𝑔(𝑥) = 𝑔( 𝑓 (𝑥)). We denote the group with
these properties as 𝐺𝐺𝑛1,𝑛2 (𝑟1, 𝑟2). If 𝑛1 = 𝑛2 we use a single subscript, and similarly for 𝑟1 and 𝑟2. We
can also omit the radius specification to indicate a family of groups with unspecified but equal radii. For
example, one very important family is 𝐺𝐺5—the groups generated by five-fold rotation of two equal disks.
We will also be interested in (cyclic) subgroups generated by a single element, rather than by 𝑎 and 𝑏. We
indicate this with angle brackets: 𝐺𝐺5(𝑟)⟨𝑎𝑏−1⟩ is the subgroup of 𝐺𝐺5(𝑟) generated by 𝑎𝑏−1.

A portrait of a compound symmetry group (or a single-generator subgroup) is a pattern that is invariant
under the group elements. Most of our figures are portraits—Figure 1(a) is a portrait of 𝐺𝐺3,5(2.42, 2.41).

To build some intuition about how two-disk systems work, consider Figure 3, which shows portraits of
𝐺𝐺5 at various 𝑟. Regions that remain connected under all elements (pieces) are colored identically; the
color is a function of the size of the orbit. In Figure 3(a), 𝑟 < 1, and the two rotations do not interact—the
group is isomorphic to 𝐶5 × 𝐶5. In Figure 3(b), the disks overlap, so there is some interaction. Viewed as a
circle puzzle, we have added 9 pieces to the puzzle. This group is isomorphic to 𝐶5 ×𝐶5 × 𝐴9 (we have added

1Full portraits of all of the zoomed-in images in this paper are included in the online supplement, showing their context.
2We choose this convention so that move sequences can be read left to right. Similarly, the generators are defined to be clockwise

rotations for compatibility with normal twisty puzzle notation.
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the even permutations of the wedge pieces—see [10]). In Figure 3(c), the overlap has increased, and many
more small pieces are created. Observe that in all cases, we do have five-fold rotational symmetry about two
different points—but only within a fixed radius.

(a) (b) (c)

Figure 3: Different cases of ��5. (a) is isomorphic to �5 × �5; (b) is isomorphic to �5 × �5 × �9;
(c) is more complicated.

While compound symmetry groups are generated by isometries, it is important to note that the general group
element is not an isometry: If we perform ��, different regions have been rotated by different amounts about
different centers. This is called a piecewise isometry [4].

Infinite Groups
A key question about any two-disk group is whether it is finite or infinite. If a family �� has some infinite
member, it will have a critical radius, �� (��), such that �� (�) is finite when � < �� (��), and infinite
when � > �� (��). (We believe, but have not proved, that it will also be infinite exactly at �� (��).) We
know this because the size of the orbit of any given point cannot decrease as � increases—all group elements
that affect it are still available—so �� can never go from infinite to finite as � increases. We can also speak
of the critical radius when �1 ≠ �2 if we fix one radius.

We can precisely characterize which ���1,�2 have infinite members (this characterization is closely
related to the crystallographic restriction theorem):

Theorem 1. There exists some � for which ���1,�2 (�) is infinite if and only if lcm(�1, �2) ∉ {2, 3, 4, 6}.

Proof sketch. We omit the “only if” proof in this paper, and prove the more interesting direction.
First, assume that �1 = �2 = �. Consider a point in the intersection of the two disks that remains in

this intersection after being rotated counterclockwise about (−1, 0) by 2�/�. The group element �−1� will
act as a simple translation on all such points. In particular, �−1� represents a translation along one side of a
regular �-gon of circumradius 2, as shown in Figure 4 (consider, for example, the action on (−1, 0)); �−2�2

is another translation, and so on. We can generate translations from any one vertex of this �-gon to any other,
as long as � allows the point to remain within both disks, by composing these sequences and their inverses.

(-1, 0) (1, 0)

Figure 4: Constructible translations can shrink arbitrarily.
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There are two cases. If 𝑛 > 6, we take all the translations from one polygon vertex to an adjacent one, and
observe the images we get of the origin under all of them. The resulting 𝑛 points form another 𝑛-gon, but
smaller than the original. But again, we can form translations between any of these new points by taking
differences of the appropriate translations, and then repeat the process, resulting in a yet smaller polygon.
Thus, we can generate arbitrarily small translations, and the group must be infinite. If 𝑛 = 5, we start at the
origin and apply every other pentagon edge translation, resulting in a pentagram shape whose vertices again
form a pentagon smaller than the original. (See Figure 4, right panel.)

A careful inspection shows that no moves described above ever move a relevant point more than a
distance of 4 from either disk center. Therefore, 𝐺𝐺𝑛 (4) is infinite. If 𝑛1 ≠ 𝑛2, then it is easy to show that
(𝑎−1𝑏)𝛼 and (𝑏𝑎−1)𝛼, for some 𝛼, are rotations by 2𝜋/lcm(𝑛1, 𝑛2) about two different centers. We can use
these rotations in place of 𝑎 and 𝑏 in the proof above (with 𝑟 = 8 instead of 4). □

Geometric Constructions

For some 𝑛, we have geometric constructions showing that 𝐺𝐺𝑛 is infinite at a value of 𝑟 matching our
numerical estimates for critical radius. For other 𝑛 we have plausible geometric constructions which agree
well with our numerical estimates. But for most 𝑛, all we have is our numerical estimates.

The simplest case is 𝑛 = 5. Figure 5(a) shows the relevant geometry: two regular pentagons are centered
on (−1, 0) and (1, 0) such that the indicated edges lie along common lines, and the disk boundaries pass
through the indicated vertices. These constraints yield 𝑟 =

√︁
3 + 𝜑 ≈ 2.149, where 𝜑 is the golden ratio. A

similar analysis of the geometry in Figure 5(b), where 𝑛 = 10, gives 𝑟 =
√︁

4 − 𝜑 ≈ 1.543.

Theorem 2. 𝐺𝐺5 is infinite at 𝑟 =
√︁

3 + 𝜑.

Proof sketch. We will show an explicit move sequence that maps the origin to an infinite sequence of distinct
points. Referring again to Figure 5(a), interpreted now as the complex plane, let 𝜁𝑛 = 𝑒2𝜋𝑖/𝑛, and the point
𝐸 = 𝜁5 − 𝜁2

5 . Note that |𝐸 + 1| = 𝑟 . We focus on how the line segment 𝐸 ′𝐸 moves under specific sequences.
The point 𝐹 = 1 − 𝜁5 + 𝜁2

5 − 𝜁3
5 lies on 𝐸 ′𝐸 , as does the point 𝐺 = 2𝐹 − 𝐸 . We have three cases:

1. Line segment 𝐸 ′𝐹′ is transformed by 𝑎−2𝑏−1𝑎−1𝑏−1 to line segment 𝐺𝐹.
2. Line segment 𝐹′𝐺′ is transformed by 𝑎𝑏𝑎𝑏2 to line segment 𝐹𝐸 .
3. Line segment 𝐺′𝐸 is transformed by 𝑎𝑏𝑎𝑏−1𝑎−1𝑏−1 to line segment 𝐸 ′𝐺.

Together, these operations can translate any portion of the line segment 𝐸 ′𝐸 piecewise onto itself. At no
time does any point leave the intersection of the two disks during these transformations. The first two cases
are translations of length |𝐹 − 𝐹′ |, and the third case is a translation of length |𝐸 −𝐺 |. These two values are
not rationally related to the total length |𝐸 − 𝐸 ′ |, since |𝐸 − 𝐸 ′ |/|𝐹 − 𝐹′ | = 𝜑. We can thus map the origin
to successive points along 𝐸 ′𝐸 , by repeatedly choosing the transformation matching the region the point is
in, indefinitely; it has an infinite orbit. (We omit due to space a proof that the single generator 𝑎𝑏−1 produces
the same behavior (𝐺𝐺5(

√︁
3 + 𝜑)⟨𝑎𝑏−1⟩ is infinite), but note that this very interesting property—a single

generator produces an infinite group at the presumed critical radius—is seemingly not shared by all 𝑛.) □

For the cases of 𝑛 = 8 (Figure 5(c)) and 𝑛 = 12 (Figure 5(d)), their characteristic fractals (see the next
section) can provide insight. A path of consecutive line segments that follows the fractal structure can be
realized, starting from the center of one disk and approaching the disk boundary from the interior, each with
a single turn. For 𝑛 = 8, consecutive segments scale down by a factor of

√
2 − 1. We can calculate the

corresponding limit point from the path to yield 𝑟 = (5(2 −
√

2))1/2 ≈ 1.711. For 𝑛 = 12, an analogous
construction gives a scale factor of 2−

√
3, and 𝑟 = (2(20−11

√
3))1/2 ≈ 1.377. These conjectured closed-form

radii rely on the limit point lying on the disk boundary at the critical radius, which has not been proven.
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(a) (b)

(c) (d)

Figure 5: Geometric constructions for critical radius: (a) � = 5, (b) � = 10, (c) � = 8, (d) � = 12.

Critical Transitions and Fractals

Precisely at any group’s critical radius, we observe a distinct fractal embedded in the image. It seems
remarkable that these fractals have gone unnoticed for so long; they seem as natural as, for instance, the
Mandelbrot set or the Sierpinski carpet. We can define the characteristic fractal for �� to be the set of points
with infinite orbits at �� (�� (��)). In particular, this associates a unique fractal with every � ∉ {2, 3, 4, 6},
and similarly when �1 ≠ �2. We also have fractals when �1 ≠ �2, but in that case the critical radius becomes a
two-parameter family. The canonical example is the fractal for � = 5, shown in Figure 1(b). We also include
in this paper the fractals for � = 8 (Figure 5(c)) and � = 12 (Figure 5(d)). In the online supplement, we
include higher-resolution images of the characteristic fractals for all � up to 20.

The appearance of fractals here seems somewhat mysterious. The hallmark of a fractal is the repeating
of a pattern on successively smaller scales. But unlike fractals constructed with an explicit recursive rule,
there are no scaling operations in these systems, only rotations. Where do they come from? Why do they
look so different for different �? Some insight may be gained by considering Figure 4, which shows that in
fact, rotations can combine to shrink patterns.

A natural question for any characteristic fractal is whether it is the closure of the orbit of a single point,
or whether it consists of finitely or infinitely many disjoint closures of orbits. In many cases the fractals seem
to be closures of the orbits of the origin, though there seems to be no theoretical reason this should be so.
For � = 23, it appears that the fractal consists of two distinct pieces, symmetric about the �-axis. However, it
is possible that these pieces are connected, and we have not been able to reach this connection numerically.

An especially interesting case is � = 7. Here, there seems to be a clear fractal structure. We can zoom
in several times and see the same structure repeating. But then at a certain point, after zooming in by a factor
of 500,000, the pattern suddenly changes. This was not apparent until we imaged the fractal to over 2 trillion
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points. It is possible that this broken scale symmetry is a numerical artifact, but evidence argues against this.
If it is real, this is perhaps the most mysterious process related to these systems we have yet observed. A
video showing this transition may be found at [8]. A portrait of ��7 just short of the critical radius, shown
in Figure 6(a), reveals the characteristic � = 7 fractal motif.

In Figure 6(b), we see that embedded within ��12 lies a Koch-snowflake-like fractal seemingly based
on four-fold symmetry, rather than the normal three-fold.

(a) (b)

Figure 6: (a) A portrait of ��7(1.6233), (b) A portrait of ��12(
√

2)〈��−1〉.

Numerical Models and Algorithms

All of the portraits in this paper were generated by programs which simulate compound symmetry groups.
Conceptually, for each point we are interested in, we consider all possible rotation sequences applied to it, and
plot the results—i.e., we plot its orbit. Figure 1(b), for example, was generated this way. When we want to
show the action of the group on the entire space, it is more efficient to only process the disk boundaries. We
process a boundary by discretizing it into small segments, processing those segments, drawing their images
into a high-resolution bitmap, then filling the resulting spaces within the bounded regions with appropriate
colors, according to some coloring rule. This is how Figures 1(a), 6(a), 7(a), and 7(b) were generated.

(a) (b)

Figure 7: Filled images: (a) a portrait of ��9(1.408), (b) a portrait of ��5(2.144).
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The use of frontier search [5] when generating orbits helps enormously, allowing us to not keep the entire
orbit in memory. It has enabled orbits with more than 10 trillion distinct destinations to be computed, refining
our critical radius estimates and exposing the curious behaviors of some fractals discussed above.

Single-Generator Images

Additional structure can be revealed by plotting orbits under a single generator, rather than all group elements.
In the simplest case, we have 𝑎𝛼𝑏𝛽 . This defines a discrete dynamical system which is an iterated piecewise
isometry; Figure 8 shows examples. Some work has been done to characterize these systems, but many
questions remain. [3, 11]

(a) (b)

Figure 8: (a) The orbit of the upper intersection point is plotted for 𝐺𝐺21(5.82)⟨𝑎2𝑏−1⟩ and colored
according to its local density. (b) A portrait of 𝐺𝐺8(2.12)⟨𝑎2𝑏5⟩.

Critical Radii

Table 1 summarizes our knowledge of critical radii for 𝐺𝐺𝑛 with 𝑛 < 20. A table up to 𝑛 = 100 can be
found in the supplement. In all cases, points were found with a minimum of 10 billion destinations, in some
cases up to 10 trillion. These estimates may be too high because points with infinite orbit were missed, or
too low because the points searched had very large but finite images. However, there is good agreement with
the geometrically derived values, and we have confidence they are good to about 5 decimal places.

Table 1: Critical radii for 𝐺𝐺𝑛.

𝑛 Numerical estimate Algebraic expression Minimum Polynomial

5 2.148961
√︁

3 + 𝜑 𝑥4 − 7𝑥2 + 11

7 1.623574

8 1.711411
√︃

5(2 −
√

2) 𝑥4 − 20𝑥2 + 50

9 1.408482

10 1.543357
√︁

4 − 𝜑 𝑥4 − 7𝑥2 + 11

11 1.290582

12 1.376547
√︃

2(20 − 11
√

3) 𝑥4 − 80𝑥2 + 148

𝑛 Numerical estimate

13 1.213594

14 1.196554

15 1.163276

16 1.148470

17 1.127509

18 1.121505

19 1.104246
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Summary and Conclusions

The concept of compound symmetry groups opens up a new frontier in mathematics. Here we have just
begun this exploration, by considering the two-disk compound symmetry groups. This investigation has
revealed a new family of fractals, and a rich new source of spaces that combine symmetries in interesting and
unexpected ways. Similar to “Seahorse Valley” in the Mandelbrot set, these are new “places” to explore, and
we anticipate that there are more discoveries to be made. We must omit due to space many additional topics
we would like to cover, such as the appearance of quasicrystals when we move beyond the critical radius, and
other observations of aperiodic behavior.

While we have made significant progress in understanding two-disk compound symmetry groups, there
is much more work to be done. In many cases, we lack even a basic theoretical understanding of the behaviors
that cause the transition from finite to infinite size in these groups. For example, does every infinite two-disk
group contain a point whose image is infinite, or a generator of infinite order? Is the critical radius of a
two-disk system always an algebraic number, and is there a general formula for the critical radius? What
dynamics are responsible for the creation of the fractals?

Similar questions can be raised more generally for multi-disk systems or arbitrary compound symmetry
groups, where the behavior governing infinite size groups is more complicated. For example, we observe
that Theorem 1 fails to generalize to three-disk systems: consider a set of three disks centered at, say, (0, 0),
(1, 0), and (

√
2, 0), and consider the compound symmetry group obtained by taking rotation increments

𝑛1 = 𝑛2 = 𝑛3 = 2. Then if we choose disk radii to be sufficiently large, the resulting compound symmetry
group will be infinite, because the three corresponding rotations of the plane generate a pair of translations
along the 𝑥-axis whose ratio is irrational. Another question that presents itself is whether it is even decidable
whether a given multi-disk compound symmetry group is finite.
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