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Abstract
We explore some domain-specific languages to describe (families of related) paths in 3D space. In particular, we
explain the syntax, semantics, and implementation of Anton’s Path Language. The syntax resembles that of file paths
with wildcards, and the semantics of a path expression is the set of all paths that satisfy the constraints imposed by that
expression. Anton’s Path Language incorporates a mechanism to define patterns, based on repeated and transformed
motifs. Through these patterns, various symmetries can be enforced. The implementation is an efficient engine
running in Rhinoceros with GrassHopper, that quickly finds paths satisfying a given path expression and some global
constraints. Anton’s Path Language underlies a powerful toolbox for artists, who can express their ideas in a path
expression, feed it into the engine, and then post-process this through some beauty filters or by visual inspection. We
provide three example artworks and how they were discovered using this toolbox.

Introduction

Koos Verhoeff (1927–2018, [12]) is well known for his mathematical art involving piecewise linear paths in
3D space, realized by beams connected through miter joints (see Figure 1, left). It is straightforward to make
the longitudinal beam edges connect properly across all miter joints in an open path, But in a closed path, the
closing joint is in general problematic [14]. To ensure proper connection across all joints in a closed path,
Koos invented various mathematical techniques [14][15]. His selection of 3D paths was mostly guided by
his phenomenal geometric insight, which he had developed during his high-school years by solving geometry
problems in bed in the dark in his head (his parents forbade the use of light after going to bed).

trapezoidal 𝐿 joint 𝐻 joint 𝑅 joint
piece

Figure 1: Sculpture by Koos Verhoeff (left, wood, 40 cm) from 24 trapezoidal pieces with square cut faces.

Anton (the first author) has collaborated with Koos for almost 40 years. Initially, this concerned the
realization of designs by Koos. Later, Anton started exploring his own ideas. In particular, he moved away
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from beams and miter joints to curved renderings [4], focusing on the construction of 3D paths satisfying
various constraints, such as symmetry and being knotted. Anton compares his approach to the composition
of music: music for the eyes, based on repeated and transformed visual motifs. Anton, with help of Tom (the
second author) and later also Dmitry Anikin, created a tool that evolved, over many years, into a powerful
computational toolbox to explore customized search spaces for interesting paths.

Koos did occasionally use the computer to generate all possible closed paths using a particular building
block [14]. He typically used plain backtracking followed by, partly automated, beauty filtering, as he called
it. For example, the sculpture in Figure 1 was selected from all 62 882 closed paths with 24 copies of a
trapezoidal piece (Figure 1), by filtering for order-3 rotational symmetry and lack of mirror symmetry. In
this article, we focus on efficient computational techniques to compose interesting 3D paths, where some of
the filtering is already handled in the generator. In the next section, we explain the various concepts behind
the generation of 3D paths. Subsequent sections dive into Anton’s Path Language, dealing with its syntax,
semantics, implementation, and application.

Technical Preliminaries

A piecewise linear (geometric) path, from now on simply called a path, can be described by a sequence
of waypoints, where each point is defined by its Cartesian coordinates. However, for many purposes this
is an inconvenient description, since it is not invariant under rigid motions. Seymour Papert introduced a
self-relative description format, called Turtle Geometry in [8], which was further developed in [1]. Tom
investigated the generalization to 3D space and its application to mathematical art in [11].

In Turtle Geometry, a (virtual) turtle is commanded to draw a path. Thus, a path can be defined by a
sequence of turtle commands, also known as a turtle program. At each moment, the turtle has a state captured
by its position (a point) and its attitude. In 2D space, this attitude is fully defined by the turtle’s heading (a
vector). In 3D space, there is additionally the turtle’s normal (another vector, perpendicular to its heading,
defining its relative up direction). The plane perpendicular to the normal and containing the heading is called
the turtle’s base plane. The turtle commands are:

• Move(𝑑): move distance 𝑑 forward in the direction of the current heading, changing only its position;
• Turn(𝜑): turn (yaw) clockwise about the current normal by angle 𝜑, changing only its heading;
• Roll(𝜓): roll clockwise about the current heading by angle 𝜓, changing only its normal (in 3D).

Turtle Geometry can be viewed as a special-purpose programming language, because it can only be used to
compute paths. In contrast, a general-purpose programming language (GPL) can be used to solve arbitrary
computational problems; a GPL is said to be universal or Turing complete. In the world of programming, it
is nowadays common practice to solve a family of related programming problems through a domain-specific
language (DSL). The DSL offers a notation that is easy to use for domain experts that are not programmers.
A domain expert expresses the particular problem to be solved in the DSL, and the DSL’s ‘engine’ (usually
programmed in a GPL) then executes this DSL expression to obtain a solution.

Koos used Turtle Geometry extensively, and also invented further specializations, for instance, related to
the trapezoidal piece of Figure 1 (cf. [17]). He described designs involving these pieces by recipes consisting
of a string of symbols 𝐿 (left), 𝐻 (orthogonal), and 𝑅 (right). These symbols correspond to the following
turtle program fragments and to the three joints on the right in Figure 1:

𝐿 = Move(1); Roll(𝜓); Turn(60◦); Roll(𝜓 − 180◦); Move(1)
𝐻 = Move(1); Roll(90◦); Turn(90◦); Roll(−90◦); Move(1)
𝑅 = Move(1); Roll(−𝜓); Turn(−60◦); Roll(180◦ − 𝜓); Move(1)
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where 𝜓 = arccos
√︁

2/3 ≈ 35.26◦. For example, the sculpture in Figure 1 is defined by the 24-symbol
string 𝐿𝐻𝑅𝐿𝐿𝑅𝐻𝐿𝐿𝐻𝑅𝐿𝐿𝑅𝐻𝐿𝐿𝐻𝑅𝐿𝐿𝑅𝐻𝐿. The regularity in this string can be made more explicit by
allowing abbreviations and transformations in the language:

(𝐴𝑎)3 where 𝐴 = 𝐿𝐻𝑅𝐿 and 𝑎 is the reverse of 𝐴

In [11][15][16][18] other specializations of Turtle Geometry are presented.
The relationship between the symmetries [5] of a path and the structure of its turtle program are

investigated in [11]. For instance, a closed path has an order-𝑛 rotational symmetry when its program can be
written as a sequence of 𝑛 copies of the same program fragment. An inefficient way of generating paths with
an order-𝑛 rotational symmetry would be to generate all paths and afterwards filter the ones with the desired
symmetry. It is more efficient to customize the generator so that it only generates paths with the desired
symmetry. One could construct a dedicated generator by hard-coding the restriction to order-𝑛 rotational
symmetry, for a specific value of 𝑛. However, changing the generator for each new design is cumbersome.

In 2016, Anton got the idea for a generator where the built-in restrictions can be tweaked through input
parameters that somehow describe the desirable patterns and possibly other constraints on the paths to be
generated. He decided to focus on point lattices. Such lattices consist of points discretely and regularly
spread throughout space. A lattice path can only connect nearest lattice points. We restrict ourselves here to
the well-known cubic lattices [19]:

• simple cubic (SC), where each point has 6 neighbors,
• face-centered cubic (FCC), where each point has 12 neighbors, and
• body-centered cubic (BCC), where each point has 8 neighbors.

The sculpture in Figure 1 involves a path in FCC. Given a lattice, the options for paths are highly constrained.
The goal is to generate paths that are unique (modulo rigid motions), closed, have no self intersections, and
exhibit certain patterns and satisfy some additional selectable global constraints. The pattern can be used
to enforce desired symmetries. The artist then chooses a particular pattern and sets constraints. When not
satisfied with the generated result, the artist can adjust the input and try again. Note that there are also
constraints that cannot be handled inside the generator, such as filtering for knots (considered out of scope).

The pattern input parameter is a path expression in what we will call Anton’s Path Language. Such path
expressions can be viewed as special turtle programs with wildcards, where the generator will try all possible
values for the wildcards, while ensuring that the global constraints are met. These wildcards are similar to
the asterisk wildcard in file paths (to match filenames) and the dot wildcard in regular expressions (to match
strings). Global constraints that are supported in Anton’s Path Language are: lattice type, joint constraints,
maximum travel distance from the origin (useful when looking for knots), and avoidance of planar paths.

Anton’s Path Language: Syntax

We first define the syntax of path expressions in a bottom-up fashion. A token is one of

• wildcard, which is one of -, <, |, >, =, and _ (single lattice step, possibly angle constrained);
• single upper-case letter (refers to basic path defined earlier; see below);
• single lower-case letter (reversal of path defined by corresponding upper-case letter);
• single letter followed by % (reflection of path defined by that letter);
• single letter followed by a number (repeated path, all joined the same way);
• wildcard followed by a number, a dot, and another number (repeated and scaled path; use repeat count 1,

if no repetition is desired).
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A basic path expression is a sequence of tokens, not starting with <, |, >, =, or _. The language does not have
parentheses for grouping. Instead one can define abbreviations, giving a single-letter name to a path:

• single upper-case letter followed by a colon (:) and a basic path expression.

An abbreviation must be defined before using it and cannot be recursive. A full path expression is a sequence
of abbreviations followed by a basic path expression, known as root. An example of a full path expression is:

A:-|>

B:A>a>

B3

Its meaning will be explained in the next section. Further examples are given in the section on applications.
Anton’s Path Language has other features, but these fall outside the scope of this article.

Anton’s Path Language: Semantics

The basic building block of a lattice path is a step, which is a directed edge (or arrow) between nearest lattice
points. A path is a sequence of adjacent steps, connected head to tail, where all points, except possibly the
first and last, are distinct (so there is no self intersection). When the first and last point are equal, the path
is called closed; otherwise it is called open. Paths that can be transformed into each other by a rigid motion
(i.e., an isometry) are considered equivalent, but keep in mind that direction matters.

We now define the semantics of path expressions, in a bottom-up and compositional fashion. Tokens
other than wildcards and basic and full path expressions all have a semantics that is a set of paths. The
semantics of a wildcard in isolation consists of just a single step, a path of length one, together with a possible
joint constraint. Note that all paths of length one in a cubic lattice are equivalent. The difference in meaning
between the various wildcards becomes clear when they are used in a basic path expression. The wildcard -
has no joint constraint; <, |, >, and = ”constrain the turn angle on the joint to the preceding step to be acute,
right, obtuse, and straight respectively; _ constrains the joint to the preceding steps to be planar.

The semantics of an upper-case letter is the semantics of its corresponding basic path expression (see
below). The semantics of a lower-case letter is the set of reversed paths for the corresponding upper-case
letter. The semantics of a letter followed by % is the set of reflected paths for that letter. A letter followed
by a number, say 𝐴𝑟, has (almost) the same semantics as 𝐴 repeated 𝑟 times, but there is an additional joint
constraint (see below). Finally, a wildcard followed by a number, a dot, and a number, say 𝑤𝑟.𝑠 has the same
semantics as 𝑤 followed by 𝑠 − 1 copies of =, and this repeated 𝑟 times; e.g., >3.2 is short for >=>=>=.

The semantics of a basic path expression, say consisting of the 𝑛 tokens 𝑡1𝑡2 . . . 𝑡𝑛, is the set of paths
obtained by taking a path from the semantics of each token, say 𝑝𝑖 for 𝑡𝑖 , and joining those into a path
𝑝 = 𝑝1𝑝2 . . . 𝑝𝑛, heeding the following rules. (1) Paths 𝑝 do not self-intersect. (2) Unless the basic path
expression is the root, paths 𝑝 are restricted to open paths. (3) Paths 𝑝𝑖 and 𝑝𝑖+1 (1 ≤ 𝑖 < 𝑛) are to be joined
in all possible ways, unless this freedom is restricted by a joint constraint. If 𝑡𝑖+1 is a wildcard with joint
constraint, then this constraint is applied. (4) Furthermore, if 𝑡𝑖+1 came from a repeated letter (e.g., B3 being
expanded to BBB), at position three or later, then there is no joint freedom and it is joined the same way as the
preceding copies. (5) Paths that ultimately derive from the same abbreviation must all use the same instance.

The semantics of a full path expression is the set of all closed paths for its root. There are two properties
that are easy to calculate for a path expression. The first is the length (total number of steps) of its paths: the
sum of the lengths of its tokens, multiplied by any repetition and scaling factors. The second is how many
degrees of freedom (DoF) it has, that is, how many independent opportunities for variation there are. This
equals the total number of tokens minus the number of basic path expressions (its first step has no freedom),
plus one for each token with a repeat count greater than one.

Bakker and Verhoeff

262



Let’s see how the example path expression of the preceding section is handled in FCC (it yields no paths in
SC because of >, and in BCC because of |). First, root B3 means that all open paths are generated for B and
3 identical copies are joined together in the same way, where that way of joining varies over all possibilities.
Since the path for B3 must be closed, the third copy must end where the first starts (if not, then the this
option is discarded). Moreover, by the Looping Theorem [13], the joint between the third and first copy will
then also be the same as the other BB joints. Next, consider how open paths for B:A>a> are generated. For
this, all open paths for A are generated, and each such path is joined in all possible ways to an obtuse step, a
reversed copy of A’s path, and another obtuse step. Finally, to generate open paths for A:-|>, a first step is
done (fixed), the next step must make a right angle with the first, and the final step an obtuse angle with the
second. This example expression generates closed paths with an order-3 rotational symmetry consisting of
24 steps. It turns out that there are 360 such paths. One of them is the sculpture in Figure 1.

Anton’s Path Language: Implementation

Anton’s Path Language is embedded in Rhino via GrassHopper, through the GhPython script component.
The actual generator is written in Cython (closed source), which is a Python superset compiled to C. The
generator uses backtracking to find all paths (modulo rigid motions), but it prunes as early as possible when
global constraints (such as being closed, free of self-intersection, and travel distance limit) are violated.

To get an impression of performance, consider the earlier example, in FCC, describing paths of length 24.
Plain backtracking would consider on the order of 1123 ≈ 1024 paths, because each step, except the first, can
choose from 11 neighbors in FCC. The example path expression, however, has fewer degrees of freedom
(DoF), viz. six (2 in A, 3 in B, and 1 in B3). In FCC a right-angle step (|) has 2 possibilities and an obtuse-
angle step (>) has 5 possibilities (see supplementary material for more information). Each unconstrained joint
before an abbreviation or inside a repeated token adds a factor 11. So, the total (worst-case) search space is
now only ≈ 2×5×114 = 146 410. The generator actually finds 360 FCC paths for this expression in 0.8 s on a
10-core 2021 M1 MacBook Pro with Rhino 7 (all times reported below concern this configuration). The path
expression consisting of 10 unconstrained steps in FCC, produces 47 440 (unique closed non-self-intersecting)
paths in 26.4 seconds.

Anton’s Path Language: Applications

We present some details for the (re)discovery of three artworks through the application of Anton’s Path
Language. How the designs are dressed up (profiled and rendered with material properties) is beyond the
scope of this article (cf. [4]). Also see [2] for more artworks by Anton.

Opus 951465 — A knot
The search for Opus 951465 starts in the SC lattice with the following path expression:

A:--1.5-1.6-1.6-1.3

B:AA%

B3

This expression describes paths with (1 + 5 + 6 + 6 + 3) × 2 × 3 = 126 steps and 6 DoF (search space size
56 = 15 625). These paths have an order-3 rotational symmetry (because of B3), and an order-6 roto-reflection
symmetry (because of B:AA%). Without a travel distance limit, the generator yields 521 paths in 7 s, and
72 paths in less than 1 s when the travel distance limit is set to 16%.

Next, Anton’s custom suspected-knot beauty filter (implemented in GrassHopper), finds 17 candidates
among 521 (15 among 72). Finally, Anton visually inspected these candidates and preferred the design in
Figure 2. Koos discovered this design in the 1990s, through geometric insight (cf. [6, Figures 4 and 5]).
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Figure 2: Opus 951465, four perspectives.

Opus 185131 – A spiral
The search for Opus 185131 starts in the FCC lattice with the following path expression:

A:--1.2_1.2_1.3_1.3_1.3_1.4_1.4_1.4_1.5

AA%

This expression describes paths with (1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5) × 2 = 62 steps and 10 DoF (search
space size 11 × 38 × 11 = 793 881). The scaling factors and planar joint constraints (_) in named path A
encourage the creation of planar spirals. This spiral is then joined to a reflected copy (AA%), so that the final
design lies in two planes. With the travel distance limit set to 13%, the generator yields 4 321 paths in 25.6 s.

The suspected-knot beauty filter identifies 46 candidates. After visual inspection, Anton preferred the
design in Figure 3, which is actually a trefoil knot.

Figure 3: Opus 185131: three perspectives; middle: plus overlay of FCC spiral A.

Opus 125707 — An optical illusion
The goal behind this design (also see [3][7]) is that the path must have 2D projections that seem topologically
contradictory. The search takes place in the BCC lattice with the following path expression
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A:-8

B:Aa

BB

This expression describes paths with 8×2×2 = 32 steps and 9 DoF (search space size 77×7×7 = 40 353 607).
With the travel distance limit set to 13%, the generator yields 39 521 paths in 108 s.

Next the suspected-knot beauty filter reduces the number of candidates (exact number was not recorded).
And then another automated custom beauty filter considers 2D projections in various directions, comparing
these topologically for crossing patterns, looking for paths where these 2D projections differ ‘significantly’
(details omitted). Finally, by visual inspection, Anton picked the design in Figure 4, where you can see how
these three 2D projections are topologically contradictory: on the left, one clearly sees two linked unknots;
in the middle, a single knot; on the right, two linked 8-shaped figures.

Figure 4: Opus 125707: three perspectives.

Conclusion

We described Anton’s Path Language, which is like a regular expression language for 3D paths to help
designers do focused searches for interesting paths. Use of this language leads to huge time savings when
exploring design alternatives. The language still evolves and has been extended with numerous features. One
of these features is support for generating (boundaries of) 2D tiles that satisfy the Conway criteria [9], so that
they can yield Escher-like tessellations. Another extension involves loops and branching (also see branching
in the language of [18]). Moreover, additional beauty filters have been implemented, for instance, to help
find all possibilities for linking multiple copies of the same path.

It must be emphasized that Anton uses his Path Language merely as a tool in the search for sculptures that
fit his philosophy. His artwork is intended to loosen our grip on a singular reality and bridge our differences
of perspective. Viewing his sculptures in the round is intrinsic to the meaning of his art.

It would be interesting to consider language extensions that go outside lattices, as in [16][10]. A
completely different angle is to explore the similarity with music composition, where a melody is like a path
in tonal space, constructed from motifs with transformations like time reversal, pitch-interval reflection, and
time scaling.
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