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Abstract 

This paper discusses “stick hyperboloids” and three geometric questions related to their construction. These are
physical structures made by assembling rigid physical rods that cross each other, creating an attractive model of a
hyperboloid  of  one  sheet.  First,  some  educational,  architectural,  and  artistic  examples  are  illustrated.  Then
original results are explained concerning the spacing between the crossings, the angles for pre-drilling connector
holes, and what exactly happens when the structure is flexed.  These results almost certainly were discovered
previously, but I could find no hint of them in the literature. In addition, I show a new form of paper hyperboloid
model that emerged from this analysis.

Introduction and Examples

The hyperboloid of one sheet is a classic surface in 3D space. [16] I will ignore the hyperboloid of two
sheets in this paper, so from here on “of one sheet” will always be implied. Figure 1(a) illustrates a finite
portion of this infinite hourglass. It is a quadric surface, so can be expressed as a polynomial equation in
the variables x, y, and z using exponents no higher than 2. A standard form is (x/a)2 + (y/b)2 - (z/c)2 = 1,
where the parameters a,  b, and c determine its shape. A common special case is when a = b, making it
rotationally symmetric about the z axis, i.e., a surface of revolution with circular (instead of the generally
elliptical) “waist.” It can be generated by rotating a hyperbola about one of its mirror lines. Hyperboloids
are “doubly ruled” surfaces, meaning through each point of the surface it is possible to draw two distinct
straight lines entirely within the surface. One set of rulings is right-handed while the other is left-handed.
“Stick hyperboloids” are physical models, as in Figure 1(b), that use rigid rods to reify these rulings. They
are visually engaging in part because they manifest the apparent paradox of being doubly curved surfaces
made of straight components.

Figure 1:  (a) finite portion of a hyperboloid surface.  (b) stick hyperboloid of skewers and rubber bands.
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The history of  hyperboloids  goes  back to  classical  times.  After  calculating  the volume of  a
sphere, Archimedes described how to calculate the volume of a segment of a hyperboloid. [13]
The  polymath  architect  Christopher  Wren  discovered  and  formally  proved  in  1669 that  the
hyperboloid is a doubly ruled surface. [1] (As far as I know, Wren did not use hyperboloids in
any  architectural  context.)  He  described  how  the  properties  of  ruled  surfaces  simplify  the
grinding of hyperboloid-shaped lenses, as one can apply a straight tool obliquely to a rotating
cylinder of glass. Wren was inspired by seeing a round wicker basket “woven only from straight
pieces of osier lying at oblique angles”, presumably akin to Figure 1(b) and the modern wicker-
ware mentioned below. 

    The geometry and algebra of quadric surfaces, including ellipsoids, paraboloids, hyperboloids,
etc., has standardly been taught as part of the 3D analytic geometry and multivariate calculus
curriculum. They provide an excellent domain for connecting formal methods with visual under-
standing.  As aids  in  such mathematical  pedagogy,  plaster  casts  of  hyperboloid  surfaces  and
string models of the rulings became common in late 19th century and early 20th century university
education. Many historical collections and educational catalogs include them. (Paper “sliceform”
models of hyperboloids were also made, but are not discussed here.) Figure 2(a) is a 19 th century
plaster  model  of  a  hyperboloid  surface  (with elliptical  cross  section)  from the  mathematical
models collection of the National Museum of American History. Figure 2(b) is a string model
from the same collection showing the rulings of a hyperboloid, while also including a concentric
string model of the asymptotic double-cone within it. [15] With modern technology, I have made
3D-printed stick hyperboloids as educational models.  Figure 2(c) shows a two-color example
anyone can download and replicate. [11]

Figure 2: Models: (a) Plaster surface.  (b) Strings in metal frame. (c) 3D-printed plastic.

The ingenious  Russian  engineer  Vladimir  Shukhov (1853-1939) was the  first  to  apply  stick
hyperboloids to architectural-scale constructions, patenting the idea in 1895. [5, 6] Like Wren, he
was inspired by a  woven basket.  Starting in the 1880’s,  he made a  career  of designing and
building roughly 200 large water towers, radio towers, light houses, etc., that made very efficient
use of materials with stick hyperboloid structures. Figure 3(a) shows Shukhov’s first example, a
37-meter tall water tower at the All-Russia Industrial and Art Exhibition of 1896. Then in the
first half of the twentieth century, stick hyperboloid towers of Shukhov's design were used for
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ship masts, first on Russian military ships, and then soon on US battleships until World War II.
See Figure 3(b). [2] Further inspired by Shukhov’s works, contemporary architects have gone on
to build impressive modern examples such as the 108 meter tall Kobe Port Tower in Kobe Japan,
Figure 3(c). Many examples of buildings and towers based on stick hyperboloids are collected on
a Wikipedia page. [17] As far as I can determine, almost all architectural-scale examples have
circular horizontal cross sections, but the Canton tower, a 600 meter tall observation tower in
Guangzhou, China, has elliptical cross sections. The rotation axis is typically oriented vertically,
but  the  lovely  Corporation  Street  Bridge  (Figure  3(d))  is  a  horizontal  hyperboloid  structure
connecting buildings across a street in Manchester, England.

Figure 3: Architectural examples of stick hyperboloids: (a) 1896 tower by Shukhov; 
(b) battleship masts; (c) Kobe Tower; (d) Corporation Street Bridge.

On an indoor scale, as a common example of minimalist geometric design, one often sees stick
hyperboloids worked into the structure of furniture, such as the bases of wicker tables and chairs.
A search of designer housewares websites reveals a variety of waste-paper baskets, fruit bowls,
hampers, and furniture items that are essentially stick hyperboloids. The baskets that Wren and
Shukhov mention as inspirations must have been similar.

    Some mathematically aware artists have appropriated the stick hyperboloid form for aesthetic
ends. A large,  purely sculptural example is the 12-meter tall  Tracticious designed by Robert
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Wilson for Fermilab, in Batavia, Illinois. (Figure 4(a)) [7] It was created in 1988 from 6.5-inch
diameter  stainless  steel  cryostatic  tubes  that  were  left-over  from constructing  the  Tevatron’s
superconducting magnets. The sculpture displays only the right-handed family of rulings, with
the rods anchored in the cement base to position them so they do not contact each other. 

    The largest stick hyperboloid I know that was constructed purely as art is the 52-meter tall
Mae West sculpture in Munich, Germany, completed in 2011. (Figure 4(b)) [3] The material is
carbon-fiber reinforced plastic. Its large size (a tram line runs through it), cost, and form were
politically  controversial,  but  clearly  the  artist,  Rita  McBride,  made  dramatic  use  of  new
technology that can manufacture very long continuous lengths of the strong lightweight tubing.

Figure 4: Sculptural examples of stick hyperboloids: (a) Tracticious; (b) Mae West.

Inspired by the elegance, history, and applications of hyperboloids, I have long thought about
hands-on  construction  workshops  to  make  more  people  familiar  with  them  and  with  their
mathematical characteristics. The first program I ran of this sort was at a Saturday morning math
enrichment program at Brookhaven National Laboratories in 2010, where students each made the
skewer and rubber-band model shown in Figure 1(b). [8] A few years later, Elisabeth Heathfield
and I expanded this skewer (or chopsticks) workshop to culminate in a larger-scale version made
from 4-foot wooden dowels. We wrote it up in a detailed three-part lesson plan that is part of our
Making Math Visible project. [12] After leading the activity at many sites, it is satisfying to see
it becoming a popular math construction activity, with many variations posted online by others.
    Elisabeth and I  have also made garden trellises  from five-foot long bamboo stakes held
together with cable ties. (Figure 5(a)) The largest stick hyperboloid I have made is a ten-foot
arbor-way, designed as a means to bring mathematics into a teaching garden. I led a group of
students and faculty in its construction in the summer of 2014, while I was artist in residence at
the University of British Columbia in Vancouver. Shown in Figure 5(b), it consists of forty 12-
foot long bamboo poles (twenty in each direction) held together with heavy rubber bands. It has
an elliptical  cross section and is oriented horizontally to walk through. A construction video
details the entire process. [9]
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Figure 5: (a) Five-foot tall garden trellis. (b) Eight-foot garden arborway at UBC.      

On a similar scale (but non-rigid), in 2011 while designing the Museum of Mathematics in New
York City, I created a dynamic hyperboloid exhibit large enough for visitors to sit inside of and
spin around. The upper circle is fixed to the ceiling, but the lower circle rotates, twisting elastics
from a cylinder through a continuum of hyperboloids to a double cone and back. I first built a
four-meter tall string-and-plywood prototype in the unfinished museum space as a maquette of
the concept before having professional fabricators build the visitor-ready version. [10]
    A final observation about these examples is that one can flatten a skewer-and-rubber-band
hyperboloid like a pancake or squeeze it into a narrow tube. Students love this because it can be
flattened on a table and suddenly released, to spring up into the air. The video [9] illustrates the
transformation. This only applies to Figures 1(b) and 5(a), as all the other structures above are
triangulated or rigidified in some way to eliminate this flexibility. 

Three Questions about Stick Hyperboloids

There is an extensive literature going back centuries concerning hyperboloids, looking at them
from mathematical, architectural, and educational viewpoints (among others). I have searched,
yet I have not seen any discussion of three basic questions that naturally come up when thinking
about the geometry of stick hyperboloids. To appreciate the questions, first consider the model
shown in Figure 6. It is a stick hyperboloid made from 24 identical two-foot-long laser-cut strips
of 3mm thick plywood (12 in each direction) with holes to receive small nuts and bolts. Two
unused  individual  pieces  are  also  shown,  emphasizing  that  the  holes  can  be  made  before
assembly and they are not evenly spaced. Note that the spare pieces are completely flat, just as
they come out of the laser cutter, but in the hyperboloid structure each piece has a significant
torsional twist along its length. With all this background, now consider these questions:

1) What is the spacing pattern of the crossing points? (Or, how should one plan the stick
length and hole positions for a given hyperboloid as target shape?)

2) How does each strut twist along its length? (Or at what angles should the holes be drilled
if the rod is a cylindrical dowel?)

3) What happens if the structure is flattened to a pancake or squeezed into a cigar shape? Is
there slippage at the connection points in the physical model or is a mathematically exact
motion possible as an ideal linkage?
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Figure 6: Stick hyperboloid made from twisted slats.    Figure 7: Sticks projected.         

Engineers making large-scale stick hyperboloids, such as Vladimir Shukhov, must certainly have
thought about these questions and worked out the answers for themselves, but I don’t see that
anyone has recorded the solutions in any accessible reference. This section addresses these three
questions, so is a bit more technical with some trigonometry and analytic geometry. I include
dimensions  in  order  to  design  to  a  specific  size  and  verify  all  equations  are  dimensionally
consistent.  Begin  with  the  general  form (x/a)2  + (y/b)2  -  (z/c)2 =  1,  where  the  variables  and
parameters have units of length. Using m for meter, the major and minor radius parameters a and
b might be 1m and 0.5m for the elliptical garden hyperboloid of Figure 5(b). They specify the
cross-section at z = 0m. But for simplicity, I consider only the common circular case, i.e., b = a.
So drop  b to get the two-parameter equation:  (x/a)2  + (y/a)2  - (z/c)2 =  1. This hyperboloid is
asymptotic to the circular cone (visible in Figure 2(b)): (x/a)2 + (y/a)2 - (z/c)2 = 0, which has slope
± c/a, (thinking of z as vertical). The ruling lines also have this same slope, ±  c/a, as can be seen
in Figure 2(b) or worked out by setting x = a in the hyperboloid equation to take a cross sectional
slice, and then solving for z/y.

    Let n be the desired number of struts in each direction. If one wishes to calculate the sticks’
crossing locations, the first step is to choose parameters a and c. Set a as the radius at the waist
where z = 0m. One can then play with c in graphing software to find an attractive shape or solve
for c by specifying the desired radius r at any height h, so c=h /√(r /a)

2
−1 .  

Hole Spacing: First project the sticks to the xy plane, as in Figure 7, which shows the case of
n=8. Each heavy line represents two coplanar sticks (one right-handed, one left-handed). The
circle of radius a is the waist of the hyperboloid, at z = 0m, to which all the projected sticks are
tangent. Seven crossing points in the x=a plane are shown as heavy dots; one indexed with i = 0 is
at the stick midpoint. The radial lines are spaced with an angular separation of θ =  π /n. The
distance in the xy plane from the midpoint to crossing i is a tan(i θ). That distance is scaled by the
slope  c/a to  get  the  vertical  distance  to  the  point.  Then the  Pythagorean  theorem gives  the
distance along the stick. Working this out, the position to drill hole  i is √a2

+c2 tan(π i /n) . I
used this formula to determine where to laser-cut the bolt-holes for the struts in Figure 6. For odd
n, each stick crosses the  n sticks of the other handedness. For even  n, each crosses only  n-1
others, as one is parallel. Either way, the furthest values of i are ± floor((n-1)/2).
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Strut Torsion:  When making stick hyperboloids from cylindrical rods and rubber bands as in
Figure 1(b) or 5(a), one may be oblivious to the twisting relationship between the surface and
each stick. Each crossing’s contact point is at a slightly different angle (relative to any ruling line
of the rod). If one used rigid 2×4s and drilled parallel bolt holes, it would be obvious that the
sticks could not be assembled into a curved surface. The sticks or the holes must twist along their
length, as is visible in Figure 6. Looking at a side view of a ruling line relative to the asymptotic
cone, as in Figure 2(b), it should be clear that this torsion changes by a full 180 degrees along the
infinite length of the line. To quantify it exactly, one can look at how the surface normal varies
as a function of distance along a typical ruling line, e.g., the line through the midpoint (a, 0, 0)
that goes in the (0, 1, c/a) direction. The normal at any point of the surface is in the gradient
direction: (c2x, c2y, -a2z). Knowing that the dot product of two unit-length vectors is the cosine of
the angle between them, one can solve for that angle. After a few messy steps (because distance
and normalization introduce a square root) and a small trig manipulation (replacing the arccosine
with an arctangent) everything simplifies beautifully. Details are in the online supplement to this
paper. The result is that if  d is the distance along the stick measured from the midpoint, the
torsion angle is simply ψ=arctan (d /c) . For small c (giving a pancake shape), the flip happens
quickly and the torsion quickly saturates at ± 90 degrees. For large c (a cigar shape), ψ undergoes
small linear steps from crossing to crossing, as with a helix.

Flexing: Stick hyperboloids with suitable joints at the crossings do flex. Courant and Robbins
briefly mention this [4, p. 214] and Hilbert and Cohn-Vassen give a detailed analysis [14, p. 29]
but neither discuss the change in torsion. It is easy to understand the flexing by uniformly scaling
Figure 7: as distances in the  xy plane change, the stick slope must change accordingly for the
projection to work,  but the crossing points along the stick can remain unchanged (up to the
limiting point where the sticks have zero slope). Hilbert and Cohn-Vassen approach it differently
and give a lengthy proof that flexing preserves distances, but they also go further and show that
all the stages in the flex are “confocal” [18], meaning if you slice the hyperboloid on a plane
through the  z axis  to reveal  a  hyperbola  cross section,  its  two foci  are fixed throughout  the
flexing. Formally, to preserve the foci,  a2 and  c2 change to  a2-λ and  c2+λ, respectively, which
preserves the formula above for the hole positions, but changes the value for the torsion. 

    The results above show that flexing requires the torsion at each point to change (because c is
changing and ψ is a function of c). So flexing preserves the hole spacing but not the stick torsion.
This assumes an unusual type of connecting joint: a kind of pass-through ball and socket joint.
With ordinary pin joints, like the bolts in Figure 6, which allow for rotation but not torsional
change, a stick hyperboloid can not truly flex. Conveniently, the rubber band joints in a skewer
hyperboloid like Figure 1(b) permit slippage, so they do flex in practice.

Hyperboloid Woven from Paper Strips

As an offshoot to this  analysis  I designed a new form of paper model.  Figure 8(a) shows a
triangulated approximation to a hyperboloid surface made by a simple weaving of two families
of paper strips. The edges of each strip lie on two adjacent ruling lines. In this example there are
twelve yellow right-handed strips (Figure 8(b)) and twelve red left-handed ones. The template
for them is shown in Figure 8(c); the dotted lines are fold lines where a slight zig-zag crease
should be made before weaving everything together. A pair of paper triangles connects via a
crease to cover each (non-planar) kite-shaped opening of the implicit stick hyperboloid. Clear
tape at the top and bottom rims connect the inner and outer layers. The edge lengths for the
triangulated template can be calculated using the hole spacing formula above. 
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Figure 8: (a) Woven paper hyperboloid ; (b) one pre-creased laser-cut strip; (c) template.

Conclusion

Inspired by the storied history of hyperboloid surfaces in the mathematical, educational, archi-
tectural, and artistic literature, I have designed and built a variety of original hyperboloid forms
with sticks  and with paper.  Two original  results  presented here are  useful  when pre-drilling
sticks: (a) for an n-stick hyperboloid model with parameters a and c, the position to drill hole i is

√a2
+c2 tan(π i /n) and (b) the torsional angle to drill a hole at position d (relative to the hole at

the midpoint) is ψ=arctan (d /c) . A simple method of understanding what happens when a stick
hyperboloid is flexed clarifies that the connection spacing need not change but there is torsional
rotation along each stick changing the directions of the connections as the structure is flexed.
There  is  undoubtedly  much  more  to  explore  about  stick  hyperboloids  as  they  are  endlessly
fascinating with their beautiful blend of curved and straight.
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