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Abstract  

Abelian Sandpiles are commonly investigated on unbounded two-dimensional square lattices. Less explored is the 
behavior of sandpiles on three-dimensional surfaces. In this paper I investigate partially and fully closed sandpile 
graphs that can be wrapped around cylinders and cubes. Aside from attractive symmetries not possible on a uniform 
flat lattice, I am interested in the ways that bending the sandpile in on itself this way can produce novel interactions. 
I study how the quantity and placement of drop spots affected the final stabilized pattern aesthetically and the 
density of sand throughout the sandpile. 

 
Abelian Sandpiles 

Abelian Sandpiles are a type of chip-firing model, first introduced by Bak, Tang, and Wiesenfeld [1]. Like 
other chip-firing models, the sandpile can be described as an undirected graph G containing vertices and 
edges. Edges connect neighboring vertices, and each vertex contains a whole-number quantity of grains of 
sand. Initially, grains of sand are distributed among the vertices of G, commonly a high quantity of sand in 
one vertex. 

After the sand has been dropped, we check to see if any vertices contain a quantity of sand that is 
greater than or equal to the toppling threshold. Vertices in this condition are toppled, which causes sand 
from that vertex to be evenly distributed among its neighbors. This process is then continued until the model 
reaches a stable state where no vertices can be toppled. The threshold is equal to the degree of the vertex. 
For a square grid, as in Figure 1, each vertex has degree 4; it has 4 edges connecting to its 4 neighbors. 
 

                         
 

Figure 1: Demonstration of toppling on a grid bounded by a sink, with numbers indicating quantities of 
sand grains. Left: Initial state. Middle: The vertex in the center has been toppled into its neighboring 

vertices. Right: The vertex on the left has been toppled into its neighboring vertices and the sink. 
 
Edges can also connect to an outer boundary called the sink. We can imagine sand being dropped on a table, 
with some sand falling over the side. The table’s edge is the sink, and grains of sand that fall into the sink 
are no longer part of the sandpile. The right-hand configuration in Figure 1 shows a vertex that has toppled 
sand to vertices above, below, and to the right, and also a grain into the sink on the left. 

Unbounded graphs, as well as bounded graphs with at least one vertex connected to a sink, are 
guaranteed to stabilize [4], assuming a finite quantity of sand. Conversely, a closed graph can fail to stabilize 
depending on the initial configuration and quantity of sand [2]. This will become relevant as we consider 
closed graphs like the cube surface sandpile described later in this paper. All sandpile graphs considered in 
this paper contain vertices of degree 4. 
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(a) 2 million grains dropped 

at origin.  
 

 
(d) From “Chip-Firing 

Revisited” [6] (used with 
permission). 

 
(b) Close-up of center of 2(a), 

749×749 vertices. 
 

 
(e) King’s Cross Quilt Block. 

 
(c) 2 million grains dropped 
at origin, with 749×749 sink. 
 

 
(f) King’s Cross Sandpile. 

 

 

Figure 2: Sandpile visualizations. 2(a)–(c): Classical model. 2(d)–(f): Previous Bridges contributions. 

 
Once a sandpile graph has stabilized, it can be colored according to the quantity of grains of sand at each 
vertex: 0, 1, 2, or 3. The result is a fractal-like pattern (Figure 2(a)–(c)). Throughout this paper, vertices on 
grid lattices will be colored light blue if they contain 0 grains of sand (hex value: █ #CAF0F8), and navy 
blue if they contain 3 grains of sand (hex value: █ #03045E). Vertices containing 1 grain of sand are colored 
a slightly darker blue (hex value: █ #00B4D8) than those containing 2 grains (hex value: █ #90E0EF) for 
better contrast of internal features. The color choices were made to show a strong contrast between vertices 
containing the maximum number of sand grains (3) and all other vertices. 

Bak, Tang, and Wiesenfeld considered toppling models in one, two, and three dimensions before 
settling on a two-dimensional cellular automaton [1]. The sandpile has been extensively studied in two 
dimensions, though nothing in the basic dynamics of the sandpile requires this limitation. Previous Bridges 
publications have explored the possibility of lifting the Abelian Sandpile into the third dimension. Martin 
Skrodzki and Ulrich Reitebuch considered various three-dimensional neighborhood configurations and 
initial uniform values for each vertex to produce solid sandpiles whose internal features could be explored 
by slicing [6]. The outer shells of these sandpiles resembled different polyhedrons (Figure 2(d)), and the 
internal slices produced unique patterns that could not be reproduced in two dimensions. 

My own previous Bridges work used quilting blocks as a way of defining the boundary sink of a 
sandpile, with the internal features of the block used to provide initial values for the vertices inside the 
sandpile [7]. Figure 2(e) shows an initial quilt block, and Figure 2(f) shows the resulting “quilting sandpile” 
with a square spiral feature at the center. Both works explore ways to produce varying designs in the 
resulting stabilized sandpile by changing the boundaries or lattice structure of the sandpile graph, and this 
paper considers another such technique, something I’m calling surface toppling. 
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Surface Toppling on a Cylinder 

Consider again a graph on a square grid. Instead of connecting the vertices on the left and right sides to the 
sink, we create another edge that connects the left and right sides to each other. Toppling a vertex on the 
left sends grains of sand to the right and vice versa. The vertices on the top and bottom of the graph are still 
connected to the sink, meaning that the sandpile will reach a stable configuration. Figure 3(a) demonstrates 
this behavior on a 2D planar graph. The vertex in the top left has been toppled, sending one grain of sand 
to the right, one grain downward, one grain up into the sink, and one grain to the left, which ends up on the 
right side of the graph. Figure 3(b) shows the same vertex being toppled in three dimensions. Sand is toppled 
along the surface of a hollow cylinder but is not toppled through the inside or over the endcaps. 
 

                
        (a) 2D planar graph          (b) 3D graph      (c) Square endcap graph      (d) Curved endcap graph 
 

Figure 3: Cylindrical toppling behavior and unused endcap configurations. 
 

When the cylinder is digitally rendered, the m × n planar graph is drawn using m × n pixels, as shown in 
the middle image of Figure 4. This 2D image texture is then wrapped around a 3D cylinder frame (Figure 
4 left and right images). Unlike the body of the cylinder, which can be represented in 2D with a square grid, 
the endcaps are circular. Figure 3(c) shows a possible endcap arrangement with square pixels, but there are 
gaps around the outside. Figure 3(d) is an alternative arrangement that keeps four neighbors for each vertex, 
but to render this you would need curved trapezoids instead of squares. As you can see from Figures 3(c) 
and 3(d), a circle cannot be cleanly mapped to a square grid or drawn using just square pixels. By leaving 
off the endcaps, I make it easier to render the cylinder sandpile, and the endcaps also function as a sink, 
guaranteeing stabilization. 

For the cylinders in this paper, I used a 180×181-vertex lattice and dropped grains of sand at various 
points along the line around the middle of the cylinder. Figure 4 shows the resulting sandpile after 100,000 
grains of sand are dropped at a single point and allowed to stabilize. 
 

                             
 

Figure 4: Cylindrical sandpiles. Left: Three-dimensional, viewed from the drop point. Middle: Two-
dimensional rendering. Right: Three-dimensional, viewing the intersection of the left and right sides. 
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(a) 3 drop spots 

 

 
(d) 5 drop spots 

 

 
(g) 12 drop spots 

 

 
(j) 30 drop spots 

 
(b) 3 drop spots with sink 

 

 
(e) 5 drop spots with sink 

 

 
(h) 12 drop spots with sink 

 

 
(k) 30 drop spots with sink 

 
(c) 3 drop spots, unbounded 

 

 
(f) 5 drop spots, unbounded 

 

 
(i) 12 drop spots, unbounded 

 

 
(l) 30 drop spots, unbounded 

 

Figure 5: 100,000 grains of sand divided equally between equidistant drop spots on a 180×181 grid.  
Left column: Two-dimensional rendering of cylinder sandpile. Middle column: Equivalent sandpile with a 

bounding sink on all four sides. Right column: Unbounded sandpile. 
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Figure 5 shows the effects of increasing the number of drop spots around the cylinder. In each case, 100,000 
grains of sand were added to the sandpile, divided into piles an equal distance apart. (In instances where 
100,000 grains did not divide evenly by the number of drop spots, I rounded down to the nearest whole 
number of grains per drop.) Using multiple drop spots produces a regular periodic pattern, with the number 
of pattern repetitions corresponding directly to the number of drop spots. The number of vertices with 3 
grains of sand also increases (seen visually as the amount of navy blue in each picture), so I measured the 
remaining sand throughout the pile to get a sense for the average sand density in grains per vertex. 
 

Table 1: Average density of sand as a relation to the number of drop spots. 
Number of vertices = 32,580 for a 180×181 sandpile. 

 

 
 

Table 1 shows the quantity of grains of sand remaining and the calculated average density per vertex after 
each cylindrical sandpile stabilizes. As the number of drop spots increases, the density of sand per vertex 
goes up as well until it reaches the maximum stable configuration of 3 grains of sand for every vertex in 
the sandpile. Contrast this with the average density of the unbounded sandpile, 2.125 grains of sand per 
vertex, measured for vertices within the spread boundary of the stabilized pile [3]. It’s unclear why 
connecting the left and right sides of the pile seems to have this leveling effect, even with sinks at both 
ends. The more that sand is spread around, the more uniform (and denser) it becomes throughout the pile. 

To confirm this is a property of the cylinder sandpile and not normal sandpile behavior, the middle 
column of Figure 5 shows the same amount of sand dropped at the same drop spots for a sandpile bound 
by a square sink. The right column shows the resulting sandpile on an unbounded lattice. In both cases the 
stable pile is an oval with a lower average sand density, and a horizontal band at its center from which the 
rest of the pile spreads. 

On the cylinder sandpile, this horizontal band is a “groove” of vertices with 2 grains of sand or fewer, 
surrounded on the top and bottom by a flat sea of vertices with 3 grains. The height of this groove remains 
constant even if we change the height of the cylinder down to the height of the groove. Figure 6 shows 
99,999 grains of sand dropped in 9 places with cylinders of varying height. 
 

 
 

Figure 6: Left: 99,999 grains dropped on 9 drop spots on a 180×181 lattice. Middle: The same amount 
of sand dropped on a 180×77 lattice. Right: The same amount of sand dropped on a 180×45 lattice. 
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Surface Toppling on a Cube 

Sand on the surface of a cylinder travels in two directions: along the curvature of the cylinder or toward 
one of the endcaps. But what if we were to try an object that can topple sand over multiple axes? 
 

 
 

Figure 7: Two-dimensional representation of a cube surface 
graph with vertices, connecting edges, and cube faces. 

A cube has six faces, each of 
which can be represented as a grid 
lattice and drawn in 2D with n × n 
pixels. Figure 7 shows how vertices at 
the boundary of each face are 
connected on a planar representation. 
Importantly, the vertices are not 
placed on the border of each face. 
Rather, the connecting edge runs over 
the side of the cube. This avoids the 
complication of rendering vertices 
that are not on a single cube face. This 
also has the benefit of keeping all 
vertices degree 4, as the eight cube 
corners would otherwise be degree 3. 
Non-uniform surface graphs may be 
considered as an extension of surface 
toppling in future work. 

 

Because the cube is a closed graph, there is a possibility that the sandpile won’t stabilize. Fortunately, 
determining a safe amount of sand to add is a relatively simple calculation. Given n vertices and m edges, 
with N being a whole-number initial quantity of sand, we can determine if the cube will stabilize using the 
following rules [2]. 
 

1. If N > 2m ˗ n, the sandpile will never stabilize. 

2. If m ≤ N ≤ 2m ˗ n, then some configurations will stabilize while others will not. 

3. If N < m, then the sandpile will always stabilize. 
 

Consider a cube with 87×87 vertices on six faces (I chose 87 vertices on a side since the expected 
density is close to the unbounded pile for 100,000 grains). The total number of vertices is n = 45,414 and 
the total number of edges is m = 90,828. The pile will stabilize if we drop less than 90,828 grains of sand 
and may stabilize if we drop up to 2m − n = 136,242 grains; anything more will infinitely topple. Figure 8 
shows a cube sandpile with 90,827 grains dropped in the center of the top face. The bottom of the cube is 
completely empty of sand, suggesting that more sand can be added before the pile will fail to stabilize. 
 

           
 

Figure 8: 90,827 grains dropped in the top center of a cube sandpile with 87×87 vertices on a face. 
Left: Top-down view. Middle: Bottom-up view. Right: Flattened cube, top in the center. 
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After some experimentation, it appears that the limit for this particular cube sandpile and configuration is 
104,599 grains. That makes the average sand density about 2.303 grains per vertex, though some areas 
midway down the sides and around the bottom are denser, and the center of the bottom is empty. Figure 9 
shows the stabilized pile from different perspectives. Because the cube is hollow, we can view the sandpile 
from both the outside and the inside. 
 

                
(a)                                      (b)                                      (c)                                      (d) 

Figure 9: 104,599 grains dropped in the top center of a cube sandpile with 87×87 vertices on a face. 
(a) Top-down view. (b) Internal view, looking at top (cube edges in yellow). 

(c) Bottom-up view. (d) Internal view, looking at bottom (cube edges in yellow). 
 

The four vertical faces of the cube are identical, as expected given the symmetrical spread. The sand 
spreading down the sides of the cube meets at the bottom to form a circular pattern. A barrier 3 grains of 
sand tall separates the pattern on the top and bottom of the cube, but the cube is all one sandpile. 

With three axes along which sand can topple, we can also produce three-fold symmetry that wouldn’t 
be possible on a normal grid lattice. Figure 10 shows a cube sandpile with 99,999 grains split between three 
vertices that meet at one corner of the cube. The front, left, and top faces are all rotations of the same image, 
as are the back, bottom, and right faces. 
 

                
(a)                                      (b)                                      (c)                                      (d) 

Figure 10: 99,999 grains dropped in one corner of a cube sandpile with 87×87 vertices on a face. 
(a) Drop corner view (drop spots marked in orange). (b) Internal view, looking at drop corner. 

(c) Opposite corner view. (d) Internal view, looking at opposite corner. 
 

The colloquial description of the sandpile model includes stacks of grains that topple, but from an abstract 
point of view, both the internal and external representation are valid ways of looking at the final pile. This 
is especially striking for our three-fold symmetry cube, where from the external perspective the sides are 
folding away from the viewer, while from the inside the faces bend toward the viewer, changing the 
appearance of the same formations (Figures 10(a) and 10(b), 10(c) and 10(d)). The images in Figures 8–11 
were produced using software that allows the user to interact with the cube—turning it to see each face, or 
even flying inside (available at https://github.com/RealFractalMan/toppling-sandpiles). 

With six faces, the cube surface opens many possibilities for drop spots in different combinations 
(more than can be definitively addressed in this paper). But while some possibilities have predictable results 
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(dropping in the center of all six faces produces a cube with six identical sides), we are not limited to drop 
spots at the center or edges. 

Using the same 87×87-vertex cube we can drop sand equally on the top and bottom of the cube. On 
the top we drop sand a third of the way from one corner, and on the bottom we drop sand a third of the way 
from the opposite corner. Figures 11(a) and 11(b) show the stabilized sandpile with 80,000 grains dropped 
to illustrate the way the pile spreads, with 11(c) and 11(d) using 102,706 grains (which, from 
experimentation, seems to be the stabilizing limit). The stabilizing limit is less than our top-only drop, 
illustrating that configuration does play a role in the stabilization limit, as discussed in [2]. 
 

                
(a)                                      (b)                                      (c)                                      (d) 

Figure 11: Skewed drops (marked in orange) on the top and bottom of the cube. (a) and (b) 80,000 grains 
(40,000 on top, 40,000 on bottom). (c) and (d) 102,706 grains (51,353 on top, 51,353 on bottom). 

 

Summary and Conclusions 

Behaviorally, the cube surface sandpile is consistent with studies of closed graphs, but the patterns that can 
be produced have the potential for unique artistic and interactive representations. The cylinder surface, on 
the other hand, produced leveling behavior that seems atypical of most sandpiles. Fluid dynamics may offer 
some insight into this behavior. The surface toppling technique can be applied to other regular polyhedrons, 
with tetrahedrons, octahedrons, and icosahedrons possible using hexagonal lattices, and hopefully this 
introduction to surface toppling will inspire the reader to conduct their own experiments. 
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