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Abstract  
Growth forms of tilings are an interesting invariant of tilings. They are fully understood in the periodic case but 
we know very little in the quasiperiodic case. Here we study this problem for quasiperiodic tilings obtained by 
the grid method. We show that such tilings have polygonal/polyhedral growth forms that result from projections 
of central sections of orthoplexes. Finally we study characteristics of the computed growth forms in 2D and 3D 
cases. 

 
Introduction 

A tiling T is a covering of plane or space by finitely many types of polygonal or polyhedral figures which 
overlap only on their boundaries. There are various methods to construct non-periodoc tilings, here we 
use the grid method which was introduced by de Bruijn [3] in the case of the Penrose tiling. It was 
widely generalised to obtain 3D quasiperiodic tilings with icosahedral and arbitrary symmetry. The main 
advantage of the method is that it allows to construct not only point sets, but to find tiles directly. This is 
beneficial especially in the 3D case. 
 

Grid tilings 
We will use the following construction: Let {g1,…, gN} be a family of N unit vectors in d-dimensional 
Euclidean space. Choose also N real parameters γi which serve as phase shifts. The N-grid LN is a union 
of N arrays of equidistant parallel hyperplanes in Rd: 

	 	 	 (step	1)	

Here (•,•) is a scalar product and 1 ≤ i ≤ N. If there is no point where more than d grid hyperplanes 
intersect, the grid is called regular. Hereafter we always suppose that the grid is regular. Note that the 
grid will be regular for almost all values of γi.  

The N-grid LN defines some tiling of the d-dimensional space, but this tiling is “bad” because the 
number of tile types is infinite. A key idea of the grid method is to consider the tiling dual to LN in some 
sense. Define N functions Ki and function K as follows: 

  (step 2) 

      (step 3)	

 Informally Ki(x) is the index of the hyperplane perpendicular to gi through x. It can be proved that 
K(x) is constant on tiles of LN. So, K maps the set of tiles of LN to a discrete set Λ in Rd. The set Λ is a set 
of vertices of some d-dimensional tiling Til that is called grid tiling. To define this tiling we must 
describe edges connecting points from Λ. The rule is as follows: Two points of Λ are connected by an 
edge if and only if corresponding tiles of LN have a common edge (step 4). 

Furthermore, the set of all tiles of LN sharing some fixed vertex is mapped (under K) to the set of all 
vertices of some tile of the grid tiling. In the 3D case the grid tiles are parallelepipeds. 
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 The construction of a 2D tiling is exemplarily illustrated in Figure 1 for N = 4 and d = 2:  

          (a)                                    (b)                                    ( c)                                       (d) 
 
Figure 1:  Construction of a grid tiling: (a) grid vectors gi, (b) 4-grid LN (step 1) with intersection point X 
and adjacent tiles A, B, C, D; dotted line for hyperplane through X and perpendicular to g3, (c) vertices Λ 
of the dual tiling (steps 2, 3) with A⟷ a, B⟷	b, C⟷ c, D⟷ d, (d) edges of dual tiling (step 4) 

 
Coronas and Growth forms 

A patch P0 is a finite set of tiles in Til. The first coordination shell P1 of P0 consists of all tiles which are 
adjacent to a tile of P0. In the n-th coordination shell Pn are all tiles adjacent to Pn-1 that are not in Pn-2. 
Here we abstain from giving a formal definition of growth form, also known as corona limit, and 
instead refer to [4]. Informally the definition may be given as “outer contour, scaled by 1/n”, or 

   if it exists, compare Figure 2.   

                     (a)                                                       (b)                                                     (c) 
Figure 2: Initial patch P0, growth form of Ammann-Beenker tiling (black line) and (a) n=5 corona,   
(b) n=15 corona, (c) n=30 corona; all tiles scaled by 1/n. 
 

It is known that all periodic tilings do have a growth form, which is some polygon or polyhedron [2], 
and we know that the growth form does not depend on the selected initial patch. For non-periodic tilings 
so far we have only few concrete examples of the calculation of the growth form, such as for the Penrose 
or Ammann-Beenker tiling [1, 7, 8]. We have not found examples of 3D growth forms in the literature. 
Many crystallographic applications  of growth forms are mentioned in [4]. A complex 3D growth form is 
the topic of the artwork “Late arrival” [6]. 
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New Theorem and Method to Calculate 2D and 3D Growth Forms 
Now consider a regular N-grid tiling Til produced by vectors {g1,..,gN}. Let {e1,..,eN} be the standard 
orthonormal base of N-dimensional space. Let ON be a boundary of the convex hull of the vectors ± ei. 
The polytope ON is known as N-dimensional cross-polytope or as N-dimensional orthoplex. Consider 
the projections 

   defined as and  

   , an orthogonal projection to the (N-d)-dimensional plane π1(t) = 0. 

 Let P be the d-dimensional plane π2(t) = 0. Then for any regular grid tiling the growth form exists 
and is given by π1 (ON ∩ P). For proof and computational details see [4]. 

 
Characteristics of the Growth Forms 

The growth forms are centrally symmetric convex polygons or polyhedrons. In the 2D case the number V 
of vertices and number E of edges is 2N each and, if the grid vectors have rotational symmetry, the 
growth form is a regular 2N-gon with radius (N/2) tan(π/(2N)). 

For the 3D case we define: A r-tuple is set of r grid vectors. A r-tuple is called flat if all its vectors 
belong to one plane. A flat r-tuple is called complete if none of the remaining N-r grid vectors belongs to 
the plane of the r-tuple. Let k(r) be the number of complete r-tuples. Then we have V, E, F (for faces): 

𝑉 = 𝑁(𝑁 − 1) −*𝑘(𝑟)(
-./

𝑟 ∗ 𝑟 − 𝑟 − 2), 𝐸 = 2𝑁(𝑁 − 1) −*2𝑘(𝑟)(𝑟 ∗ 𝑟 − 2𝑟)
-./

 

𝐹 = 𝑁(𝑁 − 1) + 2 −*𝑘(𝑟)(𝑟 ∗ 𝑟 − 3𝑟 + 2)
-./

 

If there are no flat r-tuples for r≥ 3, the sums do not apply. Each complete r-tuple produces a vertex of 
degree 2r, remaining vertices have degree 4. Table 1 gives examples without and with complete 3- tuples. 
Table 1: Examples of growth forms with N = 5. 
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3D Ammann Tiling 
Probably the best known 3D grid tiling is the Ammann tiling with icosahedral symmetry, Figure 3. Its 6 
grid vectors are derived from the dodecahedron and the growth of the tiling was the theme in [5]. The 
form turned up as a surprise in computer experiments. Now it is clear that the visual impression is correct: 
The growth form is an Archimedian polyhedron, the icosidodecahedron inscribed in a sphere of radius 

 [4]. 

 
 
Figure 3: Grid vectors and growth of the 3D Ammann tiling. 
 

Summary and Conclusions 
We can explicitly calculate growth forms for any regular grid tiling in 2D and 3D. An interesting 
unsolved problem is to find full descriptions of all polyhedra which are growth forms of grid tilings.   
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