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Abstract
From a self-similar quadrilateral tiling, we construct a scissor grid by replacing each quadrilateral with a scissor
linkage. We show that the resulting linkage is deployable if and only if the quadrilaterals are cyclic or parallelograms.

Introduction

Figure 1: Part of a self-similar
quadrilateral tiling.

Starting with any convex quadrilateral 𝑄, a tiling can be made by trans-
lating, rotating, and scaling copies of 𝑄 so that they match along edges.
See Figure 1. We call such a tiling a self-similar quadrilateral tiling. An
image of such a tiling appears as Figure 3.17 of Thurston’s book, Three-
Dimensional Geometry and Topology [2]. Unless 𝑄 is a parallelogram,
the tiling has a limit point at which the sizes of the tiles approaches zero.
Locally, the tiling is planar, but it does not link up with itself as it wraps
around its limit point. Formally, we think of it as a tiling of the universal
cover of the plane punctured at the limit point.

Scissors are formed from two rigid arms attached to each other at a
pivot. By attaching the ends (labelled 𝐴, 𝐵, 𝐶, and 𝐷 in Figure 2) of scissors to each other with further pivots
we may construct larger linkages. A linkage is deployable if it can change shape. Such linkages have a long
history in kinematic sculpture and deployable architecture [1].

We restrict to grids of scissors {𝑆𝑖, 𝑗 | 𝑖, 𝑗 ∈ Z}, where ends 𝐴 and 𝐷 of scissor 𝑆𝑖, 𝑗 are attached at pivots
to ends 𝐵 and 𝐶 (respectively) of 𝑆𝑖+1, 𝑗 . Similarly, 𝐴 and 𝐵 of 𝑆𝑖, 𝑗 are attached to 𝐷 and 𝐶 (respectively)
of 𝑆𝑖, 𝑗+1. Each scissor 𝑆 determines a quadrilateral 𝑄𝑆 (given an angle between its arms), by taking the two
arms as the diagonals of 𝑄𝑆 . We require that the quadrilaterals of neighboring scissors are coplanar and
intersect only along a shared edge. Thus a grid of scissors 𝐺 determines a quadrilateral tiling 𝑄𝐺 .
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Figure 2: A scissor at a
given angle 𝜃.

A scissor grid may or may not be deployable: as a scissor’s arms rotate,
it induces motion in its neighbors. These propagating motions must be
consistent to allow a global movement. In this paper, we prove the following:

Theorem. Let 𝐺 be a scissor grid. The following are equivalent:

(i) For some configuration of 𝐺, the quadrilaterals of 𝑄𝐺 are similar, and
𝐺 is deployable.

(ii) For some configuration of 𝐺, the quadrilaterals of 𝑄𝐺 are similar and
are cyclic or parallelograms.

(iii) For any configuration of 𝐺, the quadrilaterals of 𝑄𝐺 are similar and
are cyclic or parallelograms, and 𝐺 is deployable.

∗This research was partially supported by the Koslow Undergraduate Mathematics Research Experience Scholarship. We thank
Saul Schleimer for helpful conversations.

Bridges 2022 Conference Proceedings

313



A cyclic quadrilateral is one whose vertices lie on a circle. In order to prove this result, we first set up some
notation. Consider an arbitrary scissor as shown in Figure 2. The arms 𝐴𝐶 and 𝐵𝐷 are connected at pivot
𝑂. Let 𝑎, 𝑏, 𝑐, and 𝑑 be the scissor arm lengths: the distances from the pivot to the ends of the scissor arms.
Let 𝜃 be the angle between the two arms of the scissor; this changes as they rotate against each other. Let
𝑥, 𝑦, 𝑧, and 𝑤 be the distances between endpoints of the scissor (the side lengths of the quadrilateral); these
depend on 𝜃. The scaling factor between adjacent quadrilaterals in a self-similar tiling is defined by the ratio
of opposite sides of each quadrilateral 𝑄. That is, the tile above the quadrilateral shown in Figure 2 is scaled
by a factor of 𝜇 = 𝑥

𝑧
. The tile to the right is scaled by a factor of 𝜆 = 𝑤

𝑦
.

Proof of the Theorem

We first show that (i) =⇒ (ii). Let 𝐺 be a deployable scissor grid, and assume that the quadrilateral tiling
𝑄𝐺 is self-similar in at least one configuration. Consider the 𝑖th column of scissors {𝑆 𝑗 = 𝑆𝑖, 𝑗 | 𝑗 ∈ Z}
in 𝐺. We use notation as in Figure 2 with corresponding indices. Since 𝐺 is self-similar in at least one
configuration, we have that for some fixed scaling factor 𝜇 =

𝑥0
𝑧0

=
𝑥 𝑗

𝑧 𝑗
, neighboring scissor arm lengths are

related by 𝜇. That is, 𝑎 𝑗+1 = 𝜇𝑎 𝑗 , 𝑏 𝑗+1 = 𝜇𝑏 𝑗 , and so on. Let 𝑡 𝑗 = cos 𝜃 𝑗 . Combining the law of cosines
applied to the triangles 𝐴 𝑗𝑂 𝑗𝐵 𝑗 and 𝐶 𝑗+1𝑂 𝑗+1𝐷 𝑗+1, we get the following recurrence relation:

𝑡 𝑗+1 =
𝑎 𝑗𝑏 𝑗

𝑐 𝑗+1𝑑 𝑗+1
𝑡 𝑗 +

𝑐2
𝑗+1 + 𝑑2

𝑗+1 − 𝑎2
𝑗
− 𝑏2

𝑗

2𝑐 𝑗+1𝑑 𝑗+1
. (1)

Writing 𝑎0 = 𝑎, 𝑏0 = 𝑏, and so on, we can rewrite the recurrence relation as follows:

𝑡 𝑗+1 =
𝑎𝑏

𝜇2𝑐𝑑
𝑡 𝑗 +

𝜇2𝑐2 + 𝜇2𝑑2 − 𝑎2 − 𝑏2

2𝜇2𝑐𝑑
. (2)

Setting 𝛼 = 𝑎𝑏

𝜇2𝑐𝑑
and 𝛽 =

𝜇2𝑐2+𝜇2𝑑2−𝑎2−𝑏2

2𝜇2𝑐𝑑
, we arrive at the first order linear recurrence relation 𝑡 𝑗+1 = 𝛼𝑡 𝑗 + 𝛽.

Standard techniques for solving linear recurrence relations give the following solutions. If 𝛼 ≠ 1 then
𝑡 𝑗 =

(
𝑡0 − 𝛽

1−𝛼

)
𝛼 𝑗 + 𝛽

1−𝛼 . If 𝛼 = 1 then 𝑡 𝑗 = 𝑡0 + 𝑗 𝛽. Since 𝑡 𝑗 = cos 𝜃 𝑗 , we have that 𝑡 𝑗 ∈ [−1, 1]. If 𝛼 ≠ 1
then for sufficiently positive (𝛼 > 1) or negative (𝛼 < 1) indices 𝑗 , the value of 𝑡 𝑗 will exit [−1, 1], unless
𝑡0 =

𝛽

1−𝛼 . In this case, there is only one possibility for 𝑡0, which contradicts the fact that 𝐺 is deployable. If
𝛼 = 1 then for sufficiently large 𝑗 , 𝑡 𝑗 again exits [−1, 1] unless 𝛽 = 0. Eliminating 𝜇 from the two equations
𝛼 = 1 and 𝛽 = 0, we get an expression relating the arm lengths. Applying the same argument to an infinite
row of scissors gives the same equation, but with 𝑎 and 𝑑 playing the role of 𝑎 and 𝑏 in the column of scissors.
We get:

𝑎𝑏

𝑐𝑑
=
𝑎2 + 𝑏2

𝑐2 + 𝑑2 and
𝑎𝑑

𝑐𝑏
=
𝑎2 + 𝑑2

𝑐2 + 𝑏2 . (3)

Cross multiplying, we see that (𝑐𝑑)𝑎2 − (𝑐2 + 𝑑2)𝑎𝑏 + (𝑐𝑑)𝑏2 = 0 and (𝑐𝑏)𝑎2 − (𝑐2 + 𝑏2)𝑎𝑑 + (𝑐𝑏)𝑑2 = 0.
These can be factored as (𝑎𝑐 − 𝑏𝑑) (𝑎𝑑 − 𝑏𝑐) = 0 and (𝑎𝑐 − 𝑏𝑑) (𝑎𝑏 − 𝑐𝑑) = 0. Therefore:

(𝑎𝑐 = 𝑏𝑑 or 𝑎𝑑 = 𝑏𝑐) and (𝑎𝑐 = 𝑏𝑑 or 𝑎𝑏 = 𝑐𝑑). (4)

The first possibility from each pair of criteria is a defining characteristic of a cyclic quadrilateral. The second
criterion from each pair gives that 𝑎 = 𝑐 and 𝑏 = 𝑑, so we have the diagonals of a parallelogram. Using the
configuration given to us by (i), the similarity condition is immediate and we have obtained (ii).

We now prove (ii) =⇒ (iii). Consider a scissor 𝑆 in 𝐺 in the given configuration. The conditions of
𝑄𝑆 being cyclic or a parallelogram do not depend on the angle 𝜃, so we need only show that 𝐺 is deployable
and that the scissors remain similar for any configuration of 𝐺. Since the quadrilateral 𝑄𝑆 is cyclic or is a
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parallelogram, we have Equation (4). Following the algebra backwards, we obtain Equation (3). Rearranging
these and choosing an arbitrary angle 𝜃, we have

(𝑎2 + 𝑏2)𝑐𝑑 (−2 cos 𝜃) = (𝑐2 + 𝑑2)𝑎𝑏(−2 cos 𝜃) and (𝑎2 + 𝑑2)𝑐𝑏(2 cos 𝜃) = (𝑐2 + 𝑏2)𝑎𝑑 (2 cos 𝜃) (5)

Setting 𝑢 = 𝑎2 + 𝑏2, 𝑣 = 𝑐2 + 𝑑2, 𝑟 = −2𝑎𝑏 cos 𝜃, and 𝑠 = −2𝑐𝑑 cos 𝜃, the first equation here gives 𝑢𝑠 = 𝑣𝑟 .
So 𝑢𝑣 + 𝑢𝑠 = 𝑢𝑣 + 𝑣𝑟 , which gives us that 𝑢

𝑣
= 𝑢+𝑟

𝑣+𝑠 . Writing this in terms of 𝑎, 𝑏, 𝑐, 𝑑, and 𝜃 again, and
performing a similar calculation for the second equation, from the law of cosines we obtain:

𝑎2 + 𝑏2

𝑐2 + 𝑑2 =
𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃
𝑐2 + 𝑑2 − 2𝑐𝑑 cos 𝜃

=
𝑥2

𝑧2 and
𝑎2 + 𝑑2

𝑐2 + 𝑏2 =
𝑎2 + 𝑑2 + 2𝑎𝑑 cos 𝜃
𝑐2 + 𝑏2 + 2𝑐𝑏 cos 𝜃

=
𝑤2

𝑦2 . (6)

Therefore 𝑥2/𝑧2 and 𝑤2/𝑦2 are independent of 𝜃 (and are equal to 𝜇2 and 𝜆2 respectively). In the given
self-similar configuration of 𝐺, any scissor has arm lengths scaled by some fixed factor compared to 𝑆.
Inspecting Equation (6), we then see that 𝜇2 and 𝜆2 do not depend on the choice of scissor in 𝐺. Let 𝑆1 be the
neighboring scissor above 𝑆 in 𝐺. In any configuration of 𝐺, we must have that 𝑥 = 𝑧1. The law of cosines
applied to triangles 𝐴𝑂𝐵 and 𝐴1𝑂1𝐵1 then gives:

cos 𝜃 =
𝑎2 + 𝑏2 − 𝑥2

2𝑎𝑏
=
𝑎2 + 𝑏2 − 𝑧2

1
2𝑎𝑏

=

(
𝑎2 + 𝑏2 − 𝑧2

1
)
𝜇2

2𝑎𝑏𝜇2 =
𝑎2

1 + 𝑏2
1 − 𝑥2

1
2𝑎1𝑏1

= cos 𝜃1. (7)

Therefore 𝑆 and 𝑆1 fit together properly if and only if 𝜃 = 𝜃1. (The possibility that 𝜃 = −𝜃1 is ruled out by the
assumption that the quadrilaterals for neighboring scissors do not overlap.) Similar arguments show that any
pair of neighboring scissors in 𝐺 fit together if and only if they have the same angle. Thus we have a global
configuration of 𝐺 if and only if all scissors have the same angle, if and only if all quadrilaterals of 𝑄𝐺 are
similar. Thus 𝐺 is deployable and we have (iii). The implication (iii) =⇒ (i) is trivial. □

Construction

The parallelogram case is unsurprising, but the cyclic case is more interesting. To demonstrate the motion
accompanying such grids, we constructed finite sections of self-similar scissor grids, shown in Figures 3, 4,
and 5. A video of these is available at https://youtu.be/jjUpJCTPXaM. We 3D printed the scissor arms and
connected them with bolts and lock nuts. The linkage’s range of motion is limited by self collision only: if
the links were allowed to pass through each other and their pivots, the mechanism would freely rotate. The
links are stacked at varying heights, allowing them to pass over each other, as seen in Figures 4 and 5.

(a) (b) (c) (d) (e)

Figure 3: A grid based on a scissor with arm lengths proportional to 𝑎 = 12, 𝑏 = 8, 𝑐 = 6, 𝑑 = 9.

The grid in Figure 3 has arm lengths for each scissor in simple integer ratios that satisfy the cyclic quadrilateral
condition. These give 𝜆 = 𝑤

𝑦
= 3

2 and 𝜇 = 𝑥
𝑧
= 4

3 .
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(a) (b) (c) (d) (e)

Figure 4: A grid with 𝜆 = 𝜇.

Figure 4 shows a grid with 𝜆 = 𝜇. In this case, from Equations (3) and (6) we get that for each scissor,
𝑎𝑏
𝑐𝑑

= 𝑎𝑑
𝑐𝑏

, and so 𝑏 = 𝑑. This means that when 𝜃 = 𝜋/2 (as seen in Figure 4e) the grid has a mirror symmetry.
Continuing the movement beyond Figure 4e, the grid collapses in a mirrored fashion, except that the black and
grey columns spiral around the final square configuration. In Figures 4a and 4b we see a new phenomenon:
the grid lines up with itself and gains a rotational symmetry. This is made possible by the fact that there are
scissors that are not only similar but also congruent to other scissors in the grid. Since 𝜆 = 𝜇, the scissors of a
fixed size lie along a (1,−1) diagonal in the grid. Because these all have the same size they must necessarily
be related to each other by a rotation around the limit point of the self-similar quadrilateral tiling. In certain
configurations, these rotations line up perfectly.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: A grid with 𝜆 = 𝜇2.

In Figure 5 the two collapsed states are different from each other. Scissors along a (1,−2) diagonal are
congruent, since 𝜆 = 𝜇2. Thus, this grid can also line up with itself and have a (finite) rotational symmetry.

Future Directions

We would like to understand deployable grids which are not made from self-similar scissors. We expect
that more general constructions of this kind would allow a designer to produce scissor grids with bespoke
shape-shifting properties. In another direction, a tiling of cyclic quadrilaterals induces a grid of circles. Is
there a relation between these grids and circle packings?
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