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Abstract
We define a flexible periodic sponge surface T based on truncated octahedra (TOs), which can be folded flat. We
provide a method of creating a model of T through drawing the development (net) of an element of T on a sheet of
paper. We show that some parts of T can be fixed by filling some TOs in T , and we propose an architectural scale
construction.

Introduction

We present an infinite structure composed of planar hexagons and squares that are connected by hinges at
their edges, derived from the space packing of truncated octahedra (TOs). This surface is flexible but we
explain how it can be made rigid by retaining one column of TOs (or equivalently, by locking the hinges
along that column). We apply this idea to a transforming architectural design which begins flat then fills a
room by inflating three pillars of TOs.

To understand our new structure, one should first be familiar with the well known fact that Archimedean
truncated octahedra can be packed together to fill space without gaps or overlaps. This gives what is called
the “bitruncated cubic honeycomb” (BCH) and is described in many references [1]. The BCH is a rigid
structure with three polygons meeting at each edge: two hexagons and one square. The hexagons of the
BCH are oriented in four different orientations. Our structure retains all the squares of the BCH but only
the hexagons in one of the four orientations. A portion of the infinite structure (retaining only horizontal
hexagons) is shown in Fig. 2, which we created by using a laser cutter.

Definition 1. [2] Let T be a subset of the surfaces (2-skeleton) in the tiling (BCH) consisting of all square
faces and one set of parallel hexagonal faces. We call T a periodic sponge surface based on TOs.

It can be seen that T is connected and flexible. The complement of T is a connected volume, i.e., T does
not divide space into two or more regions. The free edges of T (bounding two sides of each square) form
a set of infinite triangular helices. In this paper, we discuss which panels can be secured after fixing some
panels of a periodic sponge surface T .

Drawing the development of T and creating a model

We suggest a method to create a model of T by drawing the development (net) of an element of T on a sheet
of paper. We call a basic part the figure obtained from a regular hexagon where the alternated three edges
are attached with squares, as shown in Fig. 1a. We take three congruent basic parts and label the hexagons
0, 1 and 2 (Fig. 1b). For a basic part, we call it 0-type if it has the hexagon labeled 0 and its three edges,
which are not adjacent to squares, marked by bold red line segments; 1-type if it has the hexagon labeled 1;
2-type if it has the hexagon labeled 2 and the three edges in squares, which are not adjacent to the hexagon,
are marked by bold red line segments (Fig. 1b).
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Using infinite congruent copies of the basic parts of the three types, we can tessellate a sheet of paper,
where each basic part is attached to the basic parts of different types, so that it is surrounded by alternated
different types and the bold red line segments are overlapped (Fig. 1c). Remove all triangles in the tessellation,
and cut along all the segments marked with a bold red line. The resulting figure is then folded along edges
so that all hexagons of 0-type (respectively, 1-type or 2-type) are included in a plane H0 (respectively, H1
or H2), where they are parallel and H1 is located in the middle of H0 and H2 (Fig. 2). This results in the
achievement of an example of a flexible periodic sponge surface.
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Figure 1: (a) A basic part. (b) Basic parts of 0-type, 1-type, and 2-type. (c) The arrangement of basic parts
of three types to tesselate a sheet of paper.

In this 3-level structure squares connect from hexagons at level 0 to level 1 and from level 1 to 2. Then level
2 connects similarly to level 0 of the next copy of the 3-level structure, as shown in Fig. 5a.

Regions that become rigid by adding TOs to T

We will show that to make up a loss by removing all the non-horizontal hexagons, if one infinite pillar of the
TOs is retained, then the entire structure is rigid and cannot collapse. A rigid surface can be made by the
following three operations.
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Figure 2: (a) A part of T obtained from the development in Fig. 1 (c), (b) its zoomed figure.

Operation 1. Add one square panel to connect two already fixed hexagonal panels in T , as shown in Fig. 3a.
Operation 2. Add one square panel and one hexagonal panel, connected to each other, to an already fixed
hexagonal panel in T , as shown in Fig. 3b.
Operation 3. Add two square panels and one hexagonal panel, connected to each other via a common vertex
to two already fixed hexagonal panels in T , as shown in Fig. 3c.
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Figure 3: (a) Operation 1, (b) Operation 2, and (c) Operation 3.

We have found that if the framework is rigid, the resulting framework obtained by Operation 1, 2, or 3 is also
rigid. The first case is shown by the fact that the four corners of the new square panel are fixed. The second
case is shown by the fact that any trihedral connection of three polygons together make a rigid structure even
though the individual edges are flexible like hinges. In the third case, denote by ab and cd the two edges of
the already fixed hexagonal panels, as shown in Fig. 3c left. By realization of T in R3, as a part of the surfaces
(2-skeleton) of the BCH, it can be shown that the distance of a and d is exactly twice the diagonal length of
a square. Hence, the common vertex should be located in the middle of a and d, and uniquely determined.
This implies that the new hexagonal panel is fixed by the two edges parallel to ab or cd.

When one TO (W1) is added to T , the 12 panels adjacent to W1 become rigid by applying Operation 2
six times (Fig. 4a). When one more TO (W2) is added to Fig. 4a, applying Operation 2, Operation 3, and
Operation 1 subsequently, the 54 new panels become rigid (Fig. 4b). When three TOs are added to T , that
is, we add one more TO (W3) to Fig. 4b, we can show that the 120 new panels become rigid (Fig. 4c). By
continuing the process above, we can show that one infinite pillar of the TOs is sufficient to make the structure
T rigid.

We created a model based on T that can be made rigid by adding TOs. We stack TOs in a column or
pillar. For example, if we consider three pillars, the periphery becomes rigid, and the end panels can be
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Figure 4: (a) Rigid panels when one TO is added. (b) Rigid panels when the second TO is added. (c) Rigid
panels when the third TO is added.

removed as needed. Let M be an example with three pillars. Remove some panels from M to create a space
that a person can stand under, as shown in Fig. 5a. If the pillars of TOs can be fabricated using inflatable
structures, the entire structure can be laid flat by removing the air from the pillars (Fig. 5b).
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Figure 5: (a) Example of a model obtained by removing some surfaces from T , with pillars, to create a
space under which a person can stand. (b) The model of (a) folded flat by removing the pillars.

Summary

We have presented a sponge surface derived from TOs and shown that one infinite pillar of the TOs is
sufficient to rigidize it.
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