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Abstract  

The Mandelbox is a recently discovered class of escape-time fractals that in its standard form has the overall 
shape of a cube. In this paper we introduce an extension to the Mandelbox iterative algorithm called radial 
reflection that allows extensive control of the overall shape of the resulting fractal. We then explore how this 
technique can be used to generate new 3D and 4D fractals, and their use for a particular artistic video style we 
call hypermandalas. 

 
Mandelbox Fractals 

The Mandelbox is a class of escape-time fractals which use a conditional combination of reflection, 
spherical inversion, scaling, translation, and rotation to transform points under iteration. It was first 
discovered by Tom Lowe in 2010 [5]. Figure 1 shows four different views of a typical 3D Mandelbox. 
The name is derived from its overall boxlike shape as shown in Figure 1a. Although it is difficult to make 
out details when looking at a small image of the whole fractal, views of the exterior at higher resolution as 
shown in Figure 1b reveal rich detail, as does the interior shown in Figure 1c. Figure 1d shows another 
useful visualization, a cutaway that slices the Mandelbox in half to reveal large scale internal structure.  

 
                  (a)                                      (b)                                      (c)                                      (d)                                   

Figure 1: Four different views of the same Mandelbox: (a) external view of entire Mandelbox, (b) 
exterior detail, (c) interior detail, (d) cutaway view of interior 

Like the Mandelbrot set and other escape-time fractals, a Mandelbox set contains all the points 
whose orbits under iterative transformation by a function do not escape. For a basic Mandelbox the 
function to apply iteratively to each point 𝑃" is defined as a composition of transformations: 

𝑃#$% = 	𝑅𝑜𝑡𝑎𝑡𝑒(𝑆𝑝ℎ𝑒𝑟𝑒𝑓𝑜𝑙𝑑5𝐵𝑜𝑥𝑓𝑜𝑙𝑑(𝑃#)9 ∗ 𝑆 +	𝑃") 
where Boxfold and Spherefold are conditional reflection and spherical inversion transforms, respectively. 
For more mathematical details see [4] or explore the many resources at the FractalForums online site [1]. 

 
Reshaping Mandelbox Fractals 

In [4] we explored replacing the Mandelbox spherical inversion with a more generalized shape inversion. 
We observed that although this generated a rich diversity of localized fractal detail, no matter what shape 
we used for the conditional inversion the overall shape of the fractal remained a cube. This is a result of 
the conditional reflection around the sides of a cube in the Boxfold transformation. Motivated to create 
non-cubic Mandelbox fractals, we explored several existing options. The first is intersection, and we have 
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already shown an example of this technique in the Figure 1d cutaway. This works by only rendering parts 
of the fractal that intersect a given shape (a half-plane for the cutaway, or in Figure 2c a sphere and a half-
plane). Another method is to apply a reverse pre-transform before the iterative loop. For example, a 
sphere-to-cube pre-transform will result in a spherical fractal. A sophisticated version of this technique is 
used in [6], where the transforms are computed using radial basis functions. But neither of the above 
methods change the iterative fractal calculations: they either simply discard parts (cutaways) or 
effectively spatially warp the original cubic fractal (pre-transforms). We also considered two powerful 
existing techniques that can yield different overall fractal shapes without cutaways or spatial warping, by 
modifying the Boxfold iterative transform. These are the generalized box fold [2] and conversion to 
Platonic dimensions (multidimensional barycentric coordinates) [8]. These two techniques are much 
closer to what we desired, however they both have requirements we would rather avoid. The generalized 
box fold requires finding the nearest point on a shape to the point under orbit with each iteration, whereas 
the Platonic dimensions approach is restricted to shapes that are intersections of sets of half planes (with 
each half plane defining one of the dimensions). But what we desire is an approach that can handle curved 
parametric shapes where there might not be a simple or efficient way to calculate nearest surface points. 

However, we found a potential starting point in a specific technique proposed in [8] for creating a 
spherical Mandelbox (a Mandelsphere). This is done by treating the distance from the origin of each point 
Po iterated on as an additional dimension for Boxfold conditional reflection. For each point P outside a 
sphere of radius r centered on the origin, an additional point reflection is applied across the point of 
intersection I of the sphere with a ray from the origin to P. We refer to this as radial reflection. The 
Spherefold conditional spherical inversion is modified in a similar manner. The result is shown in Figure 
2a. At the scale of the whole Mandelbox, this result does not appear much different than using the 
intersection technique with a sphere, or applying a sphere-to-box pre-transform. But the differences 
become apparent if we slice the Mandelsphere in half and look more closely. Figure 2b shows a cutaway 
view of the center of the radial reflection Mandelsphere. For comparison Figure 2c shows the same view 
for a Mandelsphere created by intersection with a sphere, and Figure 2d shows the same view for a 
Mandelsphere created using a sphere-to-cube pre-transform, illustrating clear differences. 

 

 
                  (a)                                      (b)                                      (c)                                      (d)                                   

Figure 2: Different results from different ways of creating a Mandelsphere: (a)external view of radial 
reflection Mandelsphere, (b) radial reflection Mandelsphere cutaway center detail, (c) intersection 

Mandelsphere cutaway center detail, (d) pre-transform Mandelsphere cutaway center detail  
 

Radial Intersect Reflection & 3D Mandelshapes 
Inspired by the Mandelsphere, we hypothesized that if radial reflection across the radius of a sphere 

results in a sphere-shaped fractal, then radial reflection across the boundary of other shapes might result 
in non-cubic shapes as well. We have confirmed this and explored radial reflection using a number of 
shapes with parametric equations for the boundary distance from the origin for a given direction in 
spherical coordinates. Examples are shown in Figure 3 and 4. For various polyhedra and rounded 
polyhedra we used the extended superspheres (which we call polysuperspheres) described in [7].  
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                          (a)                                                   (b)                                                    (c)                                                        

Figure 3: Mandelshapes generated using different shapes for the radial reflection step: 
(a) cuboctahedron , (b) five-pointed concave supershape, (c) distorted spherical harmonic spaceship 
 

Figure 3a shows the result of using a polysupersphere cuboctahedron for the radial reflection shape. 
We have also experimented with using supershapes, which are a generalization of superquadrics [3]. 
Figure 3b shows an example of using a supershape, in this case a five-pointed concave shape, 
demonstrating that the radial reflection shape does not need to be convex. Figure 3c further demonstrates 
that even concave shapes can produce fractals with overall structure that mimics the radial reflection 
shape, in this case a distorted spherical harmonic. We have also experimented with hybridizing the 
parametric equations for supershapes and polysuperspheres, creating a new parametric shape we call 
polysupershapes. Examples of fractals using different polysupershapes are shown in Figure 4. 

 
                          (a)                                                   (b)                                                    (c)                                                        
Figure 4: Radial reflection Mandelshapes based on polysupershapes with different base polysupersphere 

shapes: (a) icosahedral, (b) octahedral, (c) cuboctahedral 
 

4D Mandelshapes and Hypermandalas 
Both the standard Mandelbox iterative algorithm and radial reflection generalize to any number of 

dimensions, as long as the boundary of the n-dimensional radial reflection shape can be found along a ray 
from iterated point to origin in hyperspherical coordinates. Therefore we have explored using 4D radial 
reflection to create 4D Mandelshapes. To expand the possibilities for radial reflection in 4D we also 
created a 4D version of the supershape, from the hyperspherical product of a 3D supershape and a 2D 
supershape. Although the possibility of creating higher dimensional supershapes has been suggested 
before [3], we are not aware of any previous published work on 4D supershapes.  
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We are utilizing these experiments to create art that we call hypermandalas, which are video pieces 
that navigate 4D Mandelshapes. Each video frame is the 2D projection of a 3D slice of the 4D fractal, 
with x,y,z held fixed throughout the piece while the camera travels along the fourth dimensional w axis. 
The focus is also kept on a central point, resulting in symmetric patterns that we find reminiscent of 
meditative mandalas, but evolving over time. Figure 5 shows still frames from several of these pieces. 

 
                          (a)                                                   (b)                                                    (c)                                                        
Figure 5: Hypermandala still frames using radial reflection, based on different reflection shapes: (a) 4D 

blend of tesseract and hypersphere, (b) 4D supershape, (c) blend of 4D supershape and hypersphere  
 

Summary and Conclusions 
We generalized a prior technique for making a spherical Mandelbox, thus introducing radial reflection 
shapes to the Mandelbox algorithm. This allows the creation of new types of Mandelbox with different 
overall shapes (Mandelshapes) that mimic the radial reflection shapes. In addition we created new 
parametric shapes amenable to radial reflection, the 3D polysupershape and 4D supershape. Code for the 
work presented here is open source and available on GitHub. See genomancer.org for more information.  
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