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Abstract  

Newton’s method is a well-known method for finding solutions to nonlinear equations. Beyond its root-finding 

capabilities, the chaotic nature of Newton’s method has been widely explored in creating fractal images. This work 

presents extensions to, and variations from, the standard method, not for advancing the mathematics behind it, but 

for expanding its use in creating fractal art. Several examples of art using these methods are presented. 

 

Newton’s Method 

Newton’s method [1] is a general-purpose routine for iteratively finding solutions of equations. Because of 

its simple theoretical foundation, it has been employed from high school homework assignments to NASA 

fluid mechanics modeling [2]. Assume that the equation is f(z) = 0 and it is desired to find values of z such 

that the equation is true. Newton’s method works by assuming that the function f(z) is approximately linear 

around the solution point. That linear approximation is used to find an estimate to the solution (the value z 

where the linear function is 0). This new guess is used to create a new linear approximation and a new 

guess, etc., until either the method converges on a solution (the usual case) or does not (the fun case). Figure 

1 shows the result of applying Newton’s method in creating fractal images. Figure 1(a) shows the method 

applied to finding the solutions of z4 – 1 = 0. Each pixel is used as the complex-valued starting value of z 

and is shaded according to how long the method takes to find a solution. In Figure 1(b), the pixels are 

colored according to which one of the four solutions is found. The regions of constant grayscale (basins) at 

the top, left, and right of both images represent cases where a solution is found quickly and directly. 

Between those regions are fractal structures, in this case, along rays at 45° angles to the axes. In these areas, 

the method takes longer to converge on a solution and does so while bouncing around. The fractal nature 

of these basin boundaries shows that a small change in the starting point can lead to a large change in the 

solution found, an indication of chaos in Newton’s method. Many artists have used this as a basis for their 

work; see for example, Paul Bourke’s images [3], Kalantari’s work with polynomiography [4], and a 

previous piece of mine [5]. The motivation of the current work is to exploit the chaotic nature of Newton’s 

method (and variants thereof) for the creation of images. None of the techniques discussed below are 

assumed to provide any mathematical benefit to the user. 

 

 

(a) 

 

(b) 

Figure 1:  Newton’s method applied to the equation z4 – 1 = 0:  (a) rendered by how many  

iterations are needed to find a solution,(b) rendered by the angle of the solution found.  
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Adding an Adjustment Factor 

To provide some flexibility in the method, consider its iterative formula: 

 

znew = zold – [f(zold) / f′(zold)], 

 

where f(z) = 0 is the equation to be solved and f′(z) is the derivative of the function f with respect to z. (This 

equation derives from approximating f(z) as a linear function around the point where f(z) = 0). The bracketed 

term on the right-hand side of the equation can be considered to be an adjustment to the previous 

approximation to the solution; if zold is the solution, then f(zold) = 0, znew = zold, and there is, in effect, no 

adjustment to zold. By introducing a factor , (an approach new to me), the relative effect of the adjustment 

term can be varied. The new iteration formula is simply: 

 

znew = zold –  [f(zold) / f′′ (zold)], 

 

Setting  to 1 returns the standard Newton’s method. 

 Figure 2 shows some examples for different values of , all using f(z) = z4 – 1. As in Figure 1(a), the 

fractals are rendered to show how long it takes the method to converge to a solution, with darker colors 

indicating that more iterations are needed. As  moves away from 1, the fractal becomes more curved, 

complicated, and darker, but solutions are still found. In Figure 3, three cases are shown where the adjusted 

method does not converge on a solution. Here, the colors represent the polar angle of the final value, as in 

Figure 1(b). In these images, there are still (mainly) four shades of gray, suggesting four solutions, but the 

presence of more levels indicates that the method has not settled in on a solution. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2:  adjusted Newton’s method applied to f(z) = z4 – 1, rendered by number of iterations required 

for convergence:  (a)  =1+0.5i, (b)  = 1.3+0.5i, (c)  = 1.6+0.5i. 

 

The fractals shown in Figures 1 and 2 are conceptually similar to Julia set fractals [6]. In the standard 

quadratic Julia set for z = z2 + c, each pixel represents a different initial value of z, while c is fixed. Each 

value of c returns a different fractal. Such images demonstrate consistency in the types of structures seen 

throughout the fractal. Likewise, in Figure 3, each pixel represents a different initial value of z and  is 

fixed. In contrast, using a Mandelbrot-type of rendering (each pixel represents a different value of  and 
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the initial value of z is fixed) displays a variety of structures in the same view. Figure 4 shows three types 

of spirals from the same  region. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3:  adjusted Newton’s method applied to f(z) = z4 – 1, rendered by angle of last iteration: 

(a)  =1.470 + 0.899i, (b)  = 5.756, (c)  = 4.877 + 2.739i. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4:  types of spirals in adjusted Newton’s method fractal for f(z) = z4 – 1 and  ~ 1.5 + 0.9i, 

rendered by angle of last iteration:  (a) loose three-armed, (b) tight three-armed, (c) six-armed. 

 

Systems of Real Equations 

Newton’s method generally works well with complex numbers, because complex-valued equations 

involving polynomials and transcendental functions usually have solutions. But real-valued equations may 

not, for example, x2 + 1 = 0 or sin(y) – 3 = 0. In cases like this, the method will bounce around chaotically. 

One way to exploit this is to use two real equations, solving f(x) = 0 for the x-component of the pixel, and 

g(y) = 0 for the y-component. Let z be initialized as the complex pixel coordinate. Then, for each iteration, 

• Let x be the real part of z and y be the imaginary part of z. 

• Use Newton’s method (with or without an adjustment factor) on f(x) = 0 and g(y) = 0, 

independently. 

• Recombine x and y into z; z = x + iy. 

• Manipulate z, for example, multiplying z by a complex constant. 
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I introduced the last step to force interactions between x and y. Otherwise, the image will be that of the 

dynamics of two independent variables, which may not be interesting. Figure 5 shows three examples, each 

solving f(x) = x2 + 1 = 0 and g(y) = sin(y) + 3 = 0. In Figure 5(a), there’s no manipulation of the complex 

variable z after the new real x and y values are combined. In Figure 5(b), z is multiplied by 2 – i after each 

iteration, and Figure 5(c) shows the effect of taking the reciprocal of z after combining. As before, each 

image is rendering according to the polar angle of z at the last (32nd) iteration, since the routine did not 

converge to a solution in any of the three cases. No adjustment factor was used. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5:  examples of effects of different ways to manipulate z after independent x- and y-component 

Newton iterations:  (a) none, (b) multiply z by 2 – i, (c) take the reciprocal of z. 

 

 Another way to use multiple real equations is to have the algorithm attempt to solve them 

simultaneously. That is, solve two different real-valued equations f(x,y) = 0 and g(x,y) = 0. This requires 

modifying the iterative equation to a matrix form [7]: 

 

[
𝑥𝑛𝑒𝑤

𝑦𝑛𝑒𝑤
] = [

𝑥𝑜𝑙𝑑

𝑦𝑜𝑙𝑑
] − [

𝑎𝑓𝑥 𝑎𝑔𝑥

𝑎𝑓𝑦 𝑎𝑔𝑦
]

[
 
 
 
 
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦]
 
 
 
 
−1

[
𝑓(𝑥𝑜𝑙𝑑 , 𝑦𝑜𝑙𝑑)

𝑔(𝑥𝑜𝑙𝑑 , 𝑦𝑜𝑙𝑑)
]. 

 

Here, afx, agx, afy, and agy are the four adjustment factors, affecting: x in the f equation, x in the g equation, 

y in the f equation and y in the g equation, respectively. This matrix is the analog of the adjustment factor 

. In the standard case, it’s simply the 2 × 2 identity matrix. Clearly, this is a more involved approach, but 

the extra parameters (four adjustment factors) add more avenues for exploration. Figure 6 shows two 

examples. My image, “Sand Storm,” is in Figure 6(a), showing the adjusted method working on the system: 

f(x,y) = x2 + y2 – c = 0 and g(x,y) = x2 – y2 + d = 0, where c and d are the horizontal and vertical pixel 

coordinates, respectively. In this view, no solution is found. Figure 6(b) shows the non-adjusted (afx = 1, afy 

= 0, agx = 0, and agy = 1) method working on two non-intersecting hyperbolas, one horizontal and one 

vertical. Both images are rendered according to the angle of x + iy.  
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 This method is not limited to two equations in two variables and can be readily extended to systems 

of three equations in three unknowns, or to higher-order systems. With three variables plus formula 

parameters and the nine elements of the 3 x 3 adjustment matrix, the possibilities for creating images are 

greatly expanded. Two examples are presented in Figure 7. Figure 7(a) considers the simultaneous solutions 

of the system: x + y2 + z3 = 32, x3 + y + z2 = 12, and x2 + y3 + z = 12, which has a solution of  

x = 1, y = 2, and z = 3. This image is rendered by the number of iterations required for the unadjusted 

method to find a solution, for x and y given by the pixel coordinates around (1, 2) and z = 3. In Figure 7(b), 

the effects of the adjustment matrix elements are illustrated, with the pixel coordinates determining two of 

them, while the others are fixed. The three equations represent the surfaces of three non-intersecting 

hyperboloids and the pixel shades relate to the final angle of x + iy. 

 

 

(a) 

 

(b) 

Figure 6:  examples of Newton’s method with a 2 × 2 system of equations to find intersections of two 

curves: (a) an ellipse and a hyperbola, (b) two hyperbolas. 
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(a) 

 

(b) 

Figure 7:  examples of Newton’s method with a 3 × 3 system to find intersections of three surfaces:  

(a) x + y2 + z3 = 32, x3 + y + z2 = 12, and x2 + y3 + z = 12; (b) three non-intersecting hyperboloids. 

 

Even without changing Newton’s method, things can be done using it to create interesting images. 

Here, we look at two more techniques, involving changing the equations to be solved during the process of 

iterating. Figure 8 shows two cases of solving z3 – c = 0. The standard Newton fractal, with c = 1, resembles 

Figure 1(a), with three rays, instead of four. For Figure 8(a), c began at 1 (1 + 0i), and was then rotated 85 

degrees counterclockwise every iteration. Changing c every iteration in effect requires the method to find 

a cube root of a different number every time, so there’s no single solution on which to converge. However, 

some three-fold structure is visible in the polar angle of z. In Figure 8(b), the rotation has been increased to 

87 degrees. The overall structure is still visible, but now has been augmented by very fine fractal details 

suggesting an oscillation with a period of 31 iterations. When the rotation is increased to 89 degrees (not 

shown), all structure is lost in a sea of visual noise. 

 More extreme than altering a single parameter every iteration is to change the entire equation every 

iteration. For example, consider alternating between solving f(z) = z3 – 1 and f(z) = z9 – 1. All three solutions 

of the former equation are also solutions to the latter, so the standard Newton’s method can be expected to 

find a solution. Figure 9(a) shows this to be the case, in that the image is rendered according to how many 

iterations were required for convergence. However, the influence of the second equation shows up in 

additional structure, which hints at the ninth-order nature. In Figure 9(b), the method alternates between 

three equations, z2 – 1 = 0, z3 – 1 = 0, and z5 – 1 = 0. All three have the solution z = 1, but the path getting 

to that solution is somewhat torturous, as suggested by the fractal structure. 
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(a) 

 

(b) 

Figure 8:  rotating c each iteration in solving z3 + c = 0: (a) 85°, (b) 87°. 

 

 

 

(a) 

 

(b) 

Figure 9:  alternating equations to be solved every iteration: (a) z3 – 1= 0 and z9 – 1 = 0,  

(b) z2 – 1 = 0, z3 – 1 = 0, z5 – 1 = 0. 
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Summary and Conclusions 

The simplicity of Newton’s method makes it easy to expand upon and this paper illustrates several possible 

variations. When the goal is to enhance the method’s chaotic dynamics, as opposed to improving its 

solution-finding properties, then many changes can be made to the routine itself and how it is employed, to 

prevent a solution from being found. Then, the orbit of the iterates becomes a rich field for visual 

exploration. Two additional examples are shown in Figure 10. Figure 10(a) uses a pair of equations, x2 + 1 

= 0 (which uses an adjustment factor of 0.9) and y2 + 1 = 0 ( = 1.1). The real-valued x and y are combined 

into z, which is multiplied by the pixel coordinates each iteration.  In Figure 10(b), the equation to be solved 

in z3 – c = 0, where c is the complex pixel coordinates. The iterate and the adjustment factor are both 

multiplied each iteration, the iterate by 1 + i and the adjustment factor by 0.893 + 0.125i. In both cases, the 

grayscale levels are determined from the polar angles of z. 

 

 

(a) 

 

(b) 

Figure 10:  two additional examples: (a) two real equations and multiplying the iterate each iteration,  

(b) z3 – c = 0 and multiplying both the iterate and adjustment factor each iteration. 
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