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Abstract 

The well-known “chaos game” algorithm for generating the Sierpinski gasket stochastically is generalized to any 

order of regular polygon. A simple formula is derived that gives a value, referred to as the “kissing number,” to 

produce a crisp analog to the Sierpinski triangle for any order of regular polygon. In addition, a second kissing 

number is revealed that produces another fractal for each polygon. Finally, some surprising aspects of the 

algorithm’s behavior are revealed, including that the resulting figures contain a geometrically encoded history of 

the order of vertices targeted by the algorithm. This work was inspired by a desire to generalize the usual algorithm 

in a way that could be useful towards artistic ends and of interest for instructional ends at a variety of levels.  

 

The Chaos Game  

In the realm of iterated function systems (IFS), there is a procedure called the chaos game [1, 2] that can 

produce Figure 1. Starting with an equilateral triangle, mark a point inside (or even outside) it. Next, pick 

one of the vertices of the triangle at random. Mark another point halfway from the initial point to the chosen 

vertex. Repeat this procedure many times and you will get an image of the classic Sierpinski gasket. There 

are several ways to generate the Sierpinski gasket, but a way that involves hopping halfway to randomly 

chosen vertices is perhaps a little hard to understand at first. I use the term “cut fraction” to refer to the 

fraction of the distance from point pi to the next vertex, which determines the location of point pi + 1. 
 

 

Figure 1: A stochastically generated Sierpinski triangle, with 3 paths connecting their six initial marks. 

Each subsequent point on a given path reprises the initial point’s geometric location in the parent. 
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Generalizing the Chaos Game  

When I first encountered the chaos game many years ago, I didn’t find any discussion of a generalization 

of the algorithm to any regular polygon. So, I set out to answer this seemingly obvious question for myself. 

To get some clues, I wrote a bit of code to play around with the algorithm by varying the order of the 

polygon, the cut fraction, and several other properties. This revealed that there was always a special value 

of the cut fraction that creates a crisp fractal for any order, with the seeming exception of the square (Figure 

8). But my goal was to find a general formula for the proper cut fraction 𝑘, which I expected would depend 

only on the order n of the polygon. I was looking for the formula: 

𝑘𝑛 = 𝑓(𝑛) . 

If fact, we will see there are two unique values of the cut fraction for each order of regular polygon. 

Each gives rise to a sharp fractal structure. I call these special cut fractions the interior and exterior kissing 

numbers, kn and kn
*. The reason for this naming will become clear shortly. 

 
 

 

Figure 2: Values of the cut fraction obtained experimentally for three polygon orders.  

  

The typical way of thinking about making the Sierpinski gasket is one of recursive subdivision and 

subtraction. But a stochastic method, hopping a fixed fraction towards randomly chosen vertices many 

times, is not so amenable to our imagination’s predictive power. The mystery of this process made me want 

to understand it more deeply, and there were some interesting surprises along the way.  

The triangle case is easy to construct by subdivision because you can begin by connecting the 

midpoints of the parent triangle’s edges to generate three children triangles nested inside the parent. But 

connecting midpoints of adjacent sides for any other order of polygon yields only a scaled down and rotated 

version of the parent, plus n triangles nested between it and the parent.  

A more general way to think of first-level children is that each child starts at a unique parent vertex 

with infinitesimal radius. These then grow uniformly inside the parent while remaining anchored at their 

parent vertex. Their growth stops as soon as they just “kiss” their two neighbor siblings, either at a vertex 

or an edge. 

With this idea in mind, we can ask: given a parent polygon of order n and radius R, what child radius 

r generates n children that just touch their neighbors, either at a vertex or along an entire edge? 

Before generalizing to any regular polygon, it is useful to consider n nested circles such that each child 

circle touches the interior circumference of the parent circle at one point and each of its two neighbors at 

one point. For a parent of radius R, and child circles of radius rn, the child centers fall on a circle of radius 

𝑅 −  𝑟𝑛 =  
𝑅

1 + sin (
𝜋
𝑛)

 . 
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Though simpler, the circle case provides both a guide and a sanity check for any general formula that 

might be found for the polygon case. Such circles are shown by dashed lines in Figure 3. Contrast these to 

the circles that circumscribe the child triangles. While the polygon case should approach the circle case for 

large n, we clearly need a different formula to find the radii of child polygons, and thus where their centers 

lie relative to the parent center. 

In Figure 3, R is the radius of the parent triangle, taken to be 1, r is the radius of the child triangles, 

and 1 – r is the distance from the parent’s center to the first-level child centers. For the triangle case 1 – r 

is 0.5, whereas for the circle case the corresponding value is 0.5359. This suggests that a formula similar to 

the circle formula might yield the proper cut fraction for any regular polygon. 
 

 

Figure 3: Nested circles are generally incommensurate with nested polygons. The parent circle and 

triangle on the right both have radius R = 1. The three dashed circles are kissing circles. Their centers lie 

on the dashed circle concentric with the outer circle. The three solid circles circumscribe the kissing child 

triangles, and their centers lie on the solid circle. They have radii r. 

 

Kissing Polygons Formula Derivation  

Compared to the simplicity of nested circles, the complicating issue for polygons are the discrete vertices 

and edges. The first thing we need is a way to know which vertices of a child, relative to its anchor vertex 

on the parent, kiss its two neighbors, for any order n. 

By looking at the geometry for different n one finds that the kissing vertex vk is always 

vk = Ceiling(n/4). 

Figure 4 shows the geometric situation for an enneagon, or n = 9, case, for which Ceiling(9/4) = 3. This 

case is general enough to use for working out a general formula for the distance from the parent center to 

the children centers as some fraction of the parent radius. And, naturally, this ratio will hold for children 

and their first level children, etc., all the way down. 
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Figure 4: The key angles and lines needed to determine the child radius r from the order of a parent 

enneagon with radius R. Kissing always occurs on the dashed normal from the center of a parent, C, to 

the center of an edge. The kissing vertex is vk. The child vertex numbering begins with 0 at the vertex 

shared with the parent. Here the kissing child vertices are the third in either direction from the anchor. 

 

From Figure 4, we have the angles  

α = π/n, β = 2α (vk − 0.5), and ε = β − π/2.  

Looking at the right triangle with CA (i.e. R - r) as its hypotenuse and s as its short side we get  

s = (R − r) sin(α),  

while from the smaller triangle with hypotenuse r and long side s defining angle ε  we get  

s = r cos(ε).  

This is just what we need: two independent equations involving our unknown r:  

(R − r) sin(α) = r cos(ε).  

Setting R = 1 and solving for the child polygon’s radius r gives  

𝑟 =  
sin(𝛼)

sin(𝛼) + cos(𝜀)
 . (1) 

Finally, since the distance from the parent center to the first-level child centers is 1 – r we have:  

𝑘𝑛 = 1 − 𝑟 = 1 −  
sin(𝛼)

sin(𝛼) + cos(𝜀)
 . (2) 

This is the general formula for the interior kissing number. This gives the proper cut fraction for creating 

fractal gaskets analogous to the Sierpinski gasket for any order of a regular polygon. It depends only on n 

since that is the only dependency for α, β, and ε. Table 1 contrasts polygon and circle kissing numbers. 

 

Table 1: Values for the interior kissing numbers for polygons and circles for several values of n. 

n 3 4 5 6 7 8 9 10 11 

Polygons 0.5 0.5 0.6180 0.6667 0.6920 0.7071 0.7422 0.7639 0.7784 

Circles 0.5359 0.5858 0.6298 0.6667 0.6974 0.7323 0.7451 0.7639 0.7802 
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Notice that for every fourth order starting with 6 the polygon and circle values are the same because β is 

π/2 for such orders, which makes the polygon equation for r equal to the circle equation: 

𝑟 =  
sin(𝛼)

sin(𝛼) + cos(𝛽 −  𝜋/2)
 =  

sin(𝛼)

1 + sin(𝛼)
 . 

In general, as n becomes large, the polygons tend toward kissing at a vertex such that β approaches π/2, and 

so the polygon values converge toward the circle values, but exactly so only for n = 6, 10, etc.  

 

Two Kissing Numbers for Each Polygon Order 

If one uses cut fractions larger than the interior kissing number, the figure initially collapses toward the 

parent vertices, resembling a Cantor dust with the parent’s symmetry as it does so, especially for the square. 

For cut fractions beyond one the figure blooms anew, larger and mostly outside the parent polygon, and 

another sharp fractal appears that is significantly larger than the interior fractal, and rather different looking 

for odd orders (Figure 5). This happens at the exterior kissing number kn*. The two kissing number formulas 

vary only by the sign of r: whereas the interior kissing number is 1 – r, the exterior kissing number is  

𝑘𝑛
∗ = 1 + 𝑟 = 1 +  

sin(𝛼)

sin(𝛼) + cos(𝜀)
 . (3) 

When one goes beyond the exterior kissing number the figure expands rapidly and at a cut fraction of 2 or 

more it becomes so large and sparse that it seems to vanish into nothingness. 
 

 

Figure 5: Interior (white) and exterior (black) fractals produced by using both kissing numbers. The 

interior fractal exactly fills the parent polygon. The values of kn and kn* for each order are (a) 0.5 and 

1.5, (b) 0.618 and 1.382, (c) 0.692 and 1.308. 

 

Histories from Geometric Congruence 

The magic of kn is that it takes any point in one level to a geometrically equivalent point in the next child 

level. This trend continues ad infinitum, placing only a single mark at each level of scale descent. Beginning 

in eventual negative space is the easiest way to see this. But the scale-descending chain of geometric 

congruency does not depend on where you start. This can be seen in Figure 1, or by overlaying the path 

taken onto a cutout version of the same order, as in Figure 6. 

A Generalization of the Chaos Game

143



 

 

Figure 6: The geometric congruency of placed points shown for three short runs of the pentagonal chaos 

game. Each run goes from its initial point 0, in or on the parent, toward its first randomly chosen parent 

vertex (arrowheads). As 0.618 is the pentagonal kissing number higher, numbered points occur 0.618 of 

the distance from their predecessor to its target vertex. 

 

Yet, even if we start in what is destined to be negative space, the proper figure takes shape, seeming 

to have been made by not being made! This is entirely due to the limited resolution of our eyes and displays. 

Notice that for the last few points on the path in Figure 1, it is nearly impossible to see the ever-smaller 

negative triangles they too are in, so they perceptually contribute to the positive space of the figure by 

outlining perceptible negative space. Each different starting point, mathematically speaking, yields a 

completely different non-self-overlapping point set. But beyond the first few points all the resulting figures 

will look the same. Only zooming in continuously as the algorithm runs could reveal this to the eye. 

In principal, such a zoom ability could reveal the history of vertex targeting for a given run purely 

from the scale descending geometric congruency of each point. Thus, despite random vertex selection, the 

resulting figure contains a geometrically encoded history of the sequence of vertex targeting. This would 

involve calculating and recording each point’s coordinates to a high enough precision to be able to 

numerically zoom in on every point and determine the size of the congruent feature they landed in. Sorting 

these results according to feature size would then reveal the order of vertex targeting. Although not 

necessarily practical, this is fascinating to me on a conceptual level. It would be interesting to know the 

point count limit under various assumptions of computational resources and time. 

 

Colorful Histories 

 

Figure 7: (a) Coloring points according to the last vertex targeted before placement. (b) Coloring 

according to the next to last vertex targeted. (c) Coloring according to the 2nd to last vertex targeted 

. 
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Yet another kind of order inherent in the algorithm can be seen by assigning a unique color to each vertex 

and recording the history of vertex targeting. One can then color each mark according to how deep in their 

history we look back. Figure 7 shows three cases of such targeting history look-back. For history depth 0 

we color a point according to the last vertex targeted, for depth 1 we color according to the vertex targeted 

one before the last vertex targeted, and for depth 2 the vertex targeted 2 steps back, etc. 

Coloring history sheds light on the notion that the chaos game on the square using a cut fraction of 

0.5, which is the square’s interior kissing number, has no structure. This is dispelled by coloring history, as 

seen in Figure 8b. Finally, by upping the cut fraction past 0.5, which is the same as reducing the radius of 

the children relative to the parent, we can see that the square at 0.5 is at the edge of revealing a very visible 

fractal structure with a Cantor dust nature. 
 

 

Figure 8: Aspects of the square: (a) using the interior kissing number of 0.5 and a single color, (b) using 

history coloring with depth 2, (c) using a cut fraction of 0.55, (d) using 0.67 as the cut fraction. 

 

From Theory to Art 

Moving on to a more artistic aesthetic, below are a few images derived from this work. 
 

     
(a)                                                                            (b) 

Figure 9: These images are composites of sweeping the cut fraction over some range, thus they are like the 

frames of an animation superimposed upon each other: (a) a triangle going from interior to exterior kissing 

numbers, (b) a pentagon with the cut fraction running from 0 to 1. 
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In Figure 9 and 10, images have been made by compositing many instances of the same figure, but with 

the cut fraction changing slightly between images so each point generates a curved path over a sequence of 

images, as if what might best be viewed as an animation has been collapsed onto a single frame. 
 

     
(a)                                                                              (b) 

Figure 10: (a) a square with the cut fraction ramped from 0 to its exterior kissing number 1.5, (b) a 

heptagon ramped from 0 to its exterior kissing number 1.308. 

 

Conclusion  

In setting out on my small quest to generalize the chaos game, I had no idea of the insights I would gain 

about what it actually does. I believe that playing via code is a fantastic way to explore geometric and visual 

topics such as this one. I have created a basic web demonstration that allows anyone to play with the 

generalized chaos game. It calculates both kissing numbers for any order and allows you to try other values 

as well. The demonstration is at http://www.betweenartandscience.com/chaosgame_demo.html. 
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