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Abstract 

We explore different ways to visualize three dimensional hyperbolic tilings using two dimensional cross sections

Introduction

Three dimensional tilings of the hyperbolic 3d-space (H3) are difficult to visualize. In the standard models
of  H3 like the Poincaré Ball (PB) or Upper Half Space (UHS) [5] the tiles become very small as they
approach the boundary of H3. The complete tiling viewed from a point outside the model is actually rather
boring – just a round ball (PB) or half space (UHS). It is much more interesting to look at the tiling from
an inside point. One way is to place the viewer in the virtual reality environment and simulate the view.
The first inside view visualization was presented 25 years ago in the movie “Not Knot”[3]. More recently
these ideas were resurrected [4] and ported into interactive virtual reality applications, which can run on
smartphones[2]. Such inside-view visualization requires replacing solid tiles with some kind of a frame
construction because the solid tiles are hard to view from the inside. In this paper, we are testing ideas of
viewing H3 tilings as the intersections of the tilings with various surfaces in H3 – a hyperbolic plane, a
hyperbolic sphere, a horosphere, a lens (an equidistant surface to a hyperbolic plane), and a cyclide (in
our case, it is a surface of equal distance from a hyperbolic line). These surfaces can be naturally mapped
onto the Euclidean plane for an easy 2d display. The view in such cross sections may highlight various
properties of the tiling, such as symmetry and periodicity. Also, the cross section patterns have interesting
aesthetic properties which makes them suitable for decorative purpose. We will be working with both the
PB and UHS models as needed.  As examples we will use a H3 tiling generated by reflections in the sides
of a compact hyperbolic tetrahedra with kaleidoscopic angles (Coxeter notation [(33,4)] and [(33,5)]).

Hyperbolic Plane

The hyperbolic planes in the PB model are represented as the spheres or the planes orthogonal to the
horizon (the surface of the Poincaré Ball). The simplest ones are the planes passing through the center of
the ball. They are already flat. The intersection of the tiling with such a plane (Figure 1c) has a familiar
appearance of a regular tiling of a 2d hyperbolic plane (Figure 1a). The pattern has several larger shapes
near the center and their size decreases rapidly as it approaches the horizon of the plane (the boundary of
the circle). In contrast to a 2d tiling, the shapes in the cross section do not look similar to each other
because they are the cross sections of 3d tiles at various odd angles. However, the shapes are bound by
the hyperbolic lines, which in this model are the circles orthogonal to the horizon.

The hyperbolic planes in the UHS model are the spheres or planes orthogonal to the horizon (the flat
boundary of UHS). The simplest ones are the planes orthogonal to the horizon. The UHS plane cross
section (Figure 1d) looks similar to the 2d tiling in the upper half plane model (Figure 1b). Shapes size
rapidly decreases near the horizon. The shapes are bound by the hyperbolic lines, which are the circles or
lines orthogonal to the horizon. 

Lens

A lens is the equidistant surface to a hyperbolic plane. A lens in the PB model can be represented as a
sphere or a plane which intersects the horizon sphere at  at  acute angle. Different angles correspond to
different distance values.  The simplest (flat) lens is a plane which does not pass through the center of the
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ball.  The pattern in such a cross section (Figure 1e) behaves similarly to the hyperbolic plane cross
sections  – the  shapes  diminish  in  size  near  the  horizon.  However  the  rate  of  decrease varies  and is
controlled by the distance value of the lens. Another new property of such a pattern is the fact that the
shapes' boundaries are not hyperbolic lines anymore but a more general mix of circles.  

The lenses in the UHS model are spheres or planes intersecting the horizon plane at an acute angle.
The simplest to represent are tilted planes (Figure 1f).  Similarly to the PB model  we have shapes of
decreased size as they are approaching the horizon. The rate of decrease is controlled by the distance
value of the lens (the angle of the plane). 

Horosphere

A horospheres is the Euclidean plane embedded into H3 . A horosphere can be represented in both models
as the sphere tangent to the horizon. The most convenient horosphere model is the plane  parallel to the
horizon in the UHS model. It can be thought of as the tangent sphere of infinite radius with the tangent
point  at  infinity.  All  horospheres are  equivalent  to  each other,  there is  H3  isometry which maps  any
horosphere into any other.  Therefore, any horosphere is suitable for making a cross section. A horosphere
can be thought of as the limit of lenses  as the distance parameter tends to infinity.

The cross section with the horosphere (Figure 2a) has several striking properties: the pattern consists
of the complex web of  intersections of circles which has the same scale anywhere on the plane, it has
similar  uniform appearance but  does  not  repeat  itself.  If  the horosphere is  properly aligned with the
symmetry elements of the tiling the cross section pattern may have the corresponding symmetry but, in
general, the symmetries of the pattern are only partially visible in the horosphere cross section in places
where the horosphere intersects the location close to the vertices of the tiling. 

Cyclide 

A cyclide is an equidistant surface to a hyperbolic line. A cyclide has three independent parameters – two
end points of the line and the distance value. In the UHS model, the hyperbolic lines are half circles or
vertical  lines orthogonal to the horizon. The simplest cyclide is a conic cyclide which is an equidistant
surfaces to a vertical line (a hyperbolic line with one vertex at infinity). Such a cyclide is the infinite
vertical circular cone with the apex at the horizon. The angle of the cone corresponds to the distance
value. Other cyclides can be obtained from the conic cyclide via isometry of H3. They looks like banana
with two ends touching the horizon. To flatten the surface of the cyclide we first transform it into the
conic cyclide using isometry of H3 and unwrap the cone into the infinite sector by cutting it along straight
line via its apex.  The sector is mapped onto the infinite horizontal band using conformal mapping of the
complex plane log(z). This procedure maps the apex of the sector into the negative infinity and maps two
sides of the sector into parallel horizontal  lines.  The result  is shown at  Figure 2b.  The cyclide cross
section pattern has the uniform scale everywhere similar to a horosphere cross section. However, the
important difference of the cyclide cross section pattern is its periodicity. The pattern is always periodic
in the vertical direction  because y-axis is mapped into a polar angle of the point on the cone surface. In
general, the pattern has no other period. However, if the end points are the limit points of the same H3

isometry of the tiling the pattern has another period, as in case of Figure 2b. 

Hyperbolic Sphere

A hyperbolic  sphere  can be most  naturally represented in the PB model.  Any sphere  inside the ball
represent a hyperbolic sphere in  H3 . The intersection pattern on such spheres will be non uniform in
general. The pattern on one side of the sphere, which is closer to the horizon, will have smaller size than
on the opposite side. The spheres centered at the ball's center will have a pattern of uniform size. The
sphere is the only surface we used which cannot be flattened without distortion. It may be be confomally
flattened with scale distortions using the stereographic projection or may be left as a sphere (Figure 2c).
Most useful property of the sphere cross section is that it provides a truthful visual representation  of  a
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spherical  sub  symmetries  of  the  tiling  as  in  the  case  of  Figure  2c  which  displays  icosahedral  sub
symmetry of [(33,5)] tiling.

Figure 1: The 2d triangular tiling (*334) in the circle model (a) and  in the upper half plane model (b).
Intersection of the tetrahedral tiling  [(33,4)] with a plane in the PB model(c) and in the UHS model (d).
Intersection of the tetrahedral tiling  [(33,4)] with a lens in the PB model (e) and in the UHS model (f)
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Figure 2: Intersection of  the tetrahedral tiling [(33,4)] with (a) a horosphere, (b) a cyclide.

Intersection of  the tetrahedral tiling [(33,5)] with a sphere (c).

Conclusion

There are numerous tilings of H3; therefore, interactive environment, where parameters can be changed
and the feedback obtained instantly, provides the best opportunity for studying cross section patterns. We
refer reader to the web page [1] with links to an interactive web application and videos of cross section
animations.
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