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Abstract  

The Landmarks in Algebra quilt was an effort to include as many cultures that contributed significantly to the 
development of algebra as we know it today. Each section of the quilt illustrates a culture or a mathematician that 

made important advances in the development of algebra. Space did not allow more than four cultures, even 

though other nationalities made contributions. Babylonian mathematicians, Greek mathematicians, Indian 

mathematicians, and Persian mathematicians are highlighted for their important work.  

 

  

 

Figure 1: The Landmarks in Algebra quilt, 82 inches by 40 inches.  
   

 

First Panel: Plimpton 322  

The first panel of the quilt illustrates the Plimpton 322 tablet. The Plimpton 322 tablet inspired me to 

design a quilt based on algebra. Recent historical research by Eleanor Robson, an Oriental Scholar at the 

University of Oxford, has shed new light on the ancient work of algebra [8]. The 4,000 year old 

Babylonian cuneiform tablet of Pythagorean Triples was purchased by George Arthur Plimpton in 1923 

from Edgar J. Banks. Banks said the tablet came from a location near the ancient city of Larsa in Iraq [4]. 

Our first knowledge of mankind’s use of mathematics comes from the Egyptians and the Babylonians [1].  

 The Babylonian “texts” come to us in the form of clay tablets, usually about the size of a hand. The 

tablets were inscribed in cuneiform, a wedge-shaped writing owing its appearance to the stylus that was 

used to make it. Two types of mathematical tablets are generally found, table-texts and problem-texts [1].  

The Plimpton 322 tablet gives a table of Pythagorean triples in Babylonian Cuneiform script [9].  In 

the Plimpton 322 tablet, column 1 shows the longest leg of a right triangle. Column 2 shows the shortest 
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leg of a right triangle. Column 3 shows the hypotenuse. Finally, column 4 is a numbering of the item. 

There are 15 items in this tablet. The tablet has been recently dated to have been written between 1822-

1762 BCE.  

Babylonian numbers were positional and sexagesimal, meaning they were written in base 60. There 

was no use of zero and not all fractions were allowed. The Babylonians could extract square roots and 

solve linear systems. They could also solve cubic equations [1]. 

 

            
                                 (a)                                                               (b)                                                    (c)                                                     

 

Figure 2: (a) Cuneiform numerals, (b) a sexagesimal number sample, (c) “two birds”  
 

Figure 2a shows several examples of cuneiform numerals. Figure 2b is a sample of the sexagesimal 

number 1,57,46,40 written using the cuneiform symbols. We use base 60 to convert this to a decimal 

number:                                   . The symbol in Figure 2c is called “two 

birds.” Two birds could mean             , or                , or    
  

  
   , or just 

20. The notation is ambiguous thereby making it impossible to decipher what exact right triangles are in 

the Plimpton 322 tablet.  

 

Second Panel: Diophantus  

The second quilt panel highlights the contributions of Diophantus. Sometimes called the Father of 

Algebra, Diophantus was born between 201 and 215 CE. He died between 285 and 299 CE. He was the 

first Greek who recognized fractions as numbers [6]. Little is known about the life of Diophantus. He 

lived in Alexandria, Egypt most of his life. In modern use, Diophantine equations are usually algebraic 

equations with integer coefficients, for which integer solutions are sought. This quilt panel shows the 

right triangles 3-4-5, 8-15-17, and 20-21-29. These triangles are all integer solutions to the well-known 

Pythagorean Theorem.  

Much of our knowledge of the life of Diophantus is derived from a 5th-century Greek anthology of 

number games and puzzles created by Metrodorus [5]. One of the problems states:  
 

Here lies Diophantus, the wonder behold.  

Through art algebraic, the stone tells how old:  

God gave him his boyhood one-sixth of his life,  

One twelfth more as youth while whiskers grew rife;  

And then yet one-seventh ere marriage begun  

In five years there came a bouncing new son.  

Alas, the dear child of master and sage  

After attaining half the measure of his father’s life chill fate took him. 

After consoling his fate by the science of numbers for four years, 

he ended his life. 
 

Translating the puzzle into algebraic symbols we get the equation   
 

 
 

 

  
 

 

 
   

 

 
  , where x 

Diophantus’ age. The solution, x = 84, implies that Diophantus was 84 when he died. However, the 

accuracy of the information cannot be independently confirmed. 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While reading Claude Gaspard Bachet de Méziriac’s edition of Diophantus’ Arithmetica, Pierre de 

Fermat concluded that a certain equation considered by Diophantus had no solutions. He noted (in 

French) in the margin, “If an integer   is greater than 2, then          has no solutions in non-zero 

integers a, b, and c. I have a truly marvelous proof of this proposition which this margin is too narrow to 

contain.” A proof of what is now called “Fermat's Last Theorem” was found in 1994 by Andrew Wiles 

after working on the theorem for 7 years [5]. 

 

Third Panel: Brahmagupta  

The third panel in this quilt highlights Brahmagupta's contribution to algebra. Brahmagupta lived from 

598 CE to roughly 665 CE. In 628 he wrote the Brahmasphuta-siddhanta, where zero is clearly 

explained, and where the modern place-value Indian numeral system is fully developed [9]. It also gives 

rules for manipulating both negative and positive numbers, rules for summing series, Brahmagupta's 

identity, and the Brahmagupta theorem.  He expounded on rules for dealing with negative numbers [2]. 

His work on cyclic quadrilaterals was a significant contribution to mathematics. A cyclic 

quadrilateral is a quadrilateral whose vertices all touch the circumference of the circle. Given the length 

of four sides of a cyclic quadrilateral, a, b, c, and d, the area of the quadrilateral is 

                      where s is the semiperimeter of the quadrilateral.  

One can find the proof Brahmagupta's formula for the area of a cyclic quadrilateral at [3]. Using the 

given diagram for reference and the law of sines, we can formulate the area of the cyclic quadrilateral by 

adding the areas of   POQ and ∆ QOR.  

 

Figure 3: A cyclic quadrilateral  

 

Brahmagupta's formula is related to Heron's formula. Heron's formula for the area of a triangle comes 

from Hero of Alexandria 10 - 70 CE. Heron's formula for the area of a triangle is                 , 

with a, b, and c the length of the sides of the triangle. All triangles are cyclic. Heron's formula was found 

years before Brahmagupta's. However, Brahmagupta's formula can be used to find the area of a triangle 

by setting one of the sides of the quadrilateral equal to zero.  

There are other theorems that relate to Brahmagupta’s and Heron’s. Some of these include Ptolemy’s 

theorem, the Japanese theorem, and Parameshvara’s theorem on circumradii. The reader is encouraged to 

investigate these and other related theorems. 

  

Fourth Panel: Al-Khwarizmi 
 

The fourth panel of this quilt highlights the contributions to algebra of the Persian mathematician, 

Muhammad ibn Musa Al-Khwarizmi. Al-Khwarizmi was born in 780 CE and died in 850 CE. The word 

algebra is derived from operations described in the treatise written by this Persian mathematician.  The 

treatise was titled Al-Kitab al- Jabr-wa-l-Muqabala meaning “The Compendious Book on Calculation by 

Completion of Balancing” [9].  The Arabic word al- abr (“forcing”, “restoring”) is a process of  moving a 

deficient quantity from one side of the equation to the other side.  
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Figure 4: Al-Khwarizmi’s Completing the Square  

 

Figure 4 shows how to solve the equation           by Al-Khwarizmi’s “completing the square” 

method [7]. Start with a square of side x. The area of this square is   . Add four small rectangles of length 

x, and width  
 

 
 . Each small rectangle has an area of  

   

 
 , hence four of these rectangles is a total area of 

10x. We know this second figure has a total area of 39. Complete the square by adding 4 small squares 

with side length  
 

 
 . The area of each small square is  

  

 
 . The outside square has an area of 39 + 4 ( 

  

 
 ) or 

64. Hence each side of the square has length 8 = x + 
 

 
 + 

 

 
  =  x + 5 giving x = 3 as the solution. This 

technique is similar to the method we use today to complete the square.  

 

Conclusion 

The Landmarks in Algebra quilt highlights four significant areas of contribution to the development of 

algebra. During the last 4,000 years of recorded mathematics, other mathematics and mathematicians 

have contributed to algebra as we know it today. Research showed the four contributions illustrated in this 

quilt as being of significant value. The space constraints of a quilt limited what mathematics could be 

honored.  

 

Acknowledgements 

Professor Eleanor Robson of Ancient Middle Eastern History at the University College, London gave the 

author permission to use her drawing of the Plimpton 322 tablet for this quilt.  

 

References 

[1] Babylonian Mathematics. http://www.math.tamu.edu/~dallen/masters/egypt_babylon/babylon.pdf. 

[2] Brahmagupta. http://www.storyofmathematics.com/indian_brahmagupta.html. 

[3] T.Brooks and K. Fischbein, 

http://jwilson.coe.uga.edu/emt725/Class/Brooks/Brahmagupta/Brahmagupta.html. 

[4] B. Cipra. “Rewriting History.” What's Happening in the Mathematical Sciences, vol. 5, AMS, 2002, 

pp 54–59, http://www.ams.org/publicoutreach/happ5-history.pdf. 

[5] Diophantus. https://en.wikipedia.org/wiki/Diophantus. 

[6] Diophantus.  http://www.storyofmathematics.com/hellenistic_diophantus.html. 

[7] Islamic Mathematics–Al-Khwarizmi. 

http://www.storyofmathematics.com/islamic_alkhwarizmi.html. 

[8] E. Robson. “Drawing of Mathematical Cuneiform Tablet Plimpton 322, photograph by Otto 

Newgebauer and Abraham Sachs, 1945.” Courtesy of the American Oriental Society. 

[9] Timeline of Algebra. https://en.wikipedia.org/wiki/Timeline_of_algebra. 

Ellison

414

http://www.math.tamu.edu/~dallen/masters/egypt_babylon/babylon.pdf
http://www.storyofmathematics.com/indian_brahmagupta.html
http://jwilson.coe.uga.edu/emt725/Class/Brooks/Brahmagupta/Brahmagupta.html
http://www.ams.org/publicoutreach/happ5-history.pdf
https://en.wikipedia.org/wiki/Diophantus
http://www.storyofmathematics.com/hellenistic_diophantus.html
http://www.storyofmathematics.com/islamic_alkhwarizmi.html
https://en.wikipedia.org/wiki/Timeline_of_algebra

