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Abstract
The construction of a musical user interface providing access to all pure harmonies is a very complex problem that
defies a completely satisfying solution. The notion of the so-called isomorphic keyboard, invented by Bosanquet and
advocated by many key figures in tuning theory since the 19th century, offers a good but not a perfect solution. In
this paper, I propose an alternative approach based on the concept of a ‘just intonation (JI) plane.’ A JI plane is a true
isomorphic image of higher-dimensional affine spaces modeling tones in extended just intonation. JI keyboards are
defined as sets of keys located in a JI plane.

Introduction

Since ancient times, musicians have preferred systems of tones based on simple frequency ratios. Two tones
with frequency ratios such as 2/1 (octave), 3/2 (perfect fifth), 5/4 (just major third), and 7/4 (natural seventh)
are perceived as pleasant and pure. At the same time, it is highly preferable that a system of tones can be
accessed through a user interface with a regular structure. Musical keyboards should be such user interfaces,
and their regular structure is often described through the notion of isomorphism, in which equivalent spatial
patterns on a keyboard should result in equivalent patterns in musical pitch. The purity of harmonies and the
regularity of the structure seem to be two crucial principles guiding the construction of musical keyboards.

The layout of a standard piano keyboard tuned in the usual 12-tone equal temperament adheres to neither
of the two principles. First, several intervals are out of tune, some of them significantly. Strictly speaking, no
interval is tuned purely, except for the octaves. All other intervals are only approximated. For instance, the
pitch height of a perfect fifth is off by 2 cents and that of a major third is off by 14 cents.1 While 2 cents might
seem negligible, the mistuning of the major thirds is clearly noticeable. What is more, several just intervals
are missing from the 12-tone equal temperament and cannot be sensibly approximated. The absence of a
natural seventh (7/4) and a natural augmented fourth (11/8) is especially conspicuous. Second, the piano
keyboard is not isomorphic: equivalent spatial patterns on the keyboard do not result in equivalent patterns
in musical pitch. The same key formations give different musical chords (e.g., the major triad c–e–g and the
minor triad d– f –a are sounded in the same way) and different key formations may give the same musical
chords (e.g., major chords are performed in 6 different ways).

These issues have been addressed by musicians and theorists for a long time. Vicentino’s [9] archicem-
balo, Bosanquet’s [1] harmonium, Oettingen’s [5] orthotonophonium, and Fokker’s [3] 31-tone organ are
just some of the many historical examples of constructions addressing the shortcomings mentioned above.
Bosanquet’s solution is special because it is the first that explicitly addresses the issue of isomorphism. Most
modern designs of alternative keyboards followed Bosanquet’s idea [3, 8, 10, 6]. Most recently, Milne,
Sethares, and Plamondon [4] proposed a robust generalization of such keyboards.

Although Bosanquetian keyboards are highly regular, they usually compromise the principle of just
intonation (JI). They typically assume an equal temperament of higher cardinalities, such as 31, 53, or 72.
The model proposed in this paper enables the construction of isomorphic keyboards with strict adherence to
the principle of JI. In this regard, it may be considered an improvement and a generalization of Poole’s [7]
enharmonic keyboard.

1The interval of an octave comprises 1,200 cents. Thus, the equal-tempered semitone measures 100 cents.
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Mathematical Framework

Let 2 = p1 < · · · < pn be the first n prime numbers and q1, . . . , qn be rational numbers. We say that the term
pq1

1 . . . pqnn is the prime number representation of a divisional tone in the pn-limit system. Prime number
representations are unique up to trivial coefficients p0

i = 1. Furthermore, we say that a tone is just in the
pn-limit system if all superscripts q1, . . . , qn in its prime number representation are integers. Finally, just
tones in the 3-limit system are called Pythagorean. The concept of divisional tones describes tones in any
extended just intonation, any equal temperament, and any meantone tuning within a single model.

The divisional tones of a pn-limit system can be embedded in an n-dimensional Euclidean space En

where axes correspond to the prime numbers and the coordinates to the superscripts of their prime number
representations. We call this model the pn-limit space. Let us denote Dn its affine subspace (over the field of
rational numbers) given by the points corresponding to the divisional tones. Finally, the subset of just tones
corresponds to an n-dimensional lattice in this model.

Wedefine the pitch height as a linear function onEn by the formulah(q1, . . . , qn) = 1200 log2(p
q1
1 . . . pqnn ).

The pitch height of a tone is defined by the pitch height of the corresponding point in En. Obviously, the
pitch height is defined for all points of En and not only for the divisional tones. Points with the same pitch
height comprise parallel hyperplanes in En. We call them isotone hyperplanes. The line perpendicular to the
isotone hyperplanes and containing the origin of En is called the pitch-height axis.

Let us observe the following crucial implication of the uniqueness of the prime number representation of
divisional tones. While infinite subsets of En may have an equal pitch height, distinct divisional tones always
have distinct pitch heights. Thus, the pitch height uniquely defines the divisional tones and the restriction
h|Dn is a bijection.

We are ready to define our key concepts. Assume a two-dimensional plane P that contains the pitch
height axis and an affine mapping µ of En onto P that preserves the pitch height function, i.e., h(a) = h(µ(a))
for all a ∈ P. We call the mapping µ a JI morphism and the plane P a JI plane in the pn-limit system.2
Because of the uniqueness of pitch height values, as summarized in the previous paragraph, the restriction
µ|Dn of a JI morphism µ to the subspace of divisional tones Dn is an affine isomorphism. This result is the
most crucial mathematical finding of this paper.

Under a JI morphism, the images of the isotone hyperplanes are perpendicular to the pitch height axis
and we call them isotones. The isotone that contains the origin is called the pitch width axis. The coordinate
system given by the pitch height and pitch width axes plays a crucial role. The coordinate values on the pitch
width axis define the pitch width as a linear function w acting on En.3 A pitch width function is called trivial
if the resulting JI morphism maps the En onto a line.

Finally, assume a JI morphism µ, its corresponding JI plane P, and a non-trivial subset K of divisional
tones Dn. Then, the set of tones K , the image µ[K] ⊂ P of K under µ, and the planar points µ(k) for k ∈ K
are called key tones, JI keyboard, and keys, respectively. If additional pitch values approximating the actual
pitch heights are attached to the keys of a JI keyboard, we speak of a retuned keyboard. Thus, a retuned
keyboard is a set {(µ(k), h′(k)), k ∈ K} where the real numbers h′(k) approximate the pitch height values of
the key tones h(k). All Bosanquatian keyboards mentioned above [1, 3, 8, 4] are retuned keyboards in the
3-limit system where the Pythagorean tones are the key tones and the pitch height values are approximated
by certain equal temperaments. Erv Wilson’s mappings of ‘constant structures’ on the hexagonal keyboards
are retuned keyboards in the 3-limit system, as well.

2Although a JI morphism is assumed to act on the entire space En and a JI plane contains an entire image of it, and thus they are
not formally restricted to its subset of just tones, we still use the qualifier ‘JI’ to emphasize that our theoretical framework is directed
toward a holistic understanding of just intonation.

3My concept of pitch width is directly inspired by the homonymous concept introduced by Clampitt and Noll [2] and is a
generalization thereof.

Žabka

404



Basic Examples of a JI Keyboards

A JI keyboard is a set of keys located on a JI plane. The JI plane has two axes: the pitch height and the
pitch width. We may assume that the pitch height runs in the horizontal direction and the pitch width in the
vertical direction. The divisional tones, as a superset of just tones, are isomorphically embedded in the JI
plane: equivalent spatial patterns on the JI plane correspond to equivalent pitch patterns and vice versa.

A set of n divisional tones is called a JI basis if the set of the n corresponding points in the affine
space En along with the origin determines an affine basis of En. A JI morphism is fully determined by the
pitch width values for a JI basis and any choice of pitch width values for a JI basis uniquely determines a
JI morphism. Thus, the construction of a JI plane may comprise two steps: (1) choosing a JI basis and (2)
defining the pitch width values for the JI basis.

The standard basis of En corresponds to the series of first n prime numbers, which is thus a straightforward
choice of a JI basis. Sometimes, though, considering a different basis may be more convenient. For instance,
if our concern was to adjust the position of just tones of the 13-limit system within an octave, we could
consider the basis {2, 5/4, 11/4, 3/2, 13/8, 7/4}. Alternatively, we may want to derive the just tones of the
11-limit system from the Pythagorean tones and a system of small intervals called commas. Then, we may
consider a basis such as {2, 3/2, 81/80, 63/64, 33/32}. In our example we assume this JI basis.

Thewidth function defines the vertical location of tones on a JI plane. We call the functionws(p) = −1 for
all prime numbers p the standard pitch width. Many different non-trivial width functions can be constructed
to achieve the particular structures of JI keyboards. In our example, we consider a slight modification of
the standard pitch width given by the following mapping: 2 7→ −1, 3/2 7→ 0, 81/80 7→ 1, 63/64 7→ 1.25,
and 33/32 7→ 3. In this case, for instance, the widths of the Pythagorean whole tone 9/8, diatonic semitone
256/243, and chromatic semitone 2187/2048 are 1, −3, and 4, respectively.
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Figure 1: A simple example of a JI keyboard.

Figure 1 shows a simple JI keyboard. The unlabeled round keys with usual letter labels represent the
Pythagorean tones. For the letter labels, we assume that 1 corresponds to the tone c. The smaller round
white key shows the major third in JI, i.e., the tone 5/4, which may be derived from the Pythagorean major
third 81/64 by the correction of syntonic comma 80/81. Similarly, the unlabeled round black key shows the
minor third in JI, which corresponds to the Pythagorean minor third corrected by the syntonic comma in the
opposite direction. The black diamond marks the natural minor seventh 7/4, derived from the Pythagorean
minor seventh through the correction of the septimal comma of 63/64. Finally, the natural augmented fourth
11/8 of the 11-limit system is shown by the gray hexagon. It may be achieved by correcting the Pythagorean
fourth by the undecimal comma of 33/32.

Figure 2 shows a more complex example of a JI keyboard in the 11-limit system. The graphical
representation of keys follows the convention explained in the previous example. The largest round keys mark
the Pythagorean tones and the smaller round keys mark their syntonic comma corrections. Thus, the system
of round keys provides a relatively large selection of just tones in the 5-limit system. The diamonds show the
just tones in the 7-limit system and, finally, the hexagons represent just tones in the 11-limit system.
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Figure 2: A more complex JI keyboard in the 11-limit system.

Conclusion

Weproposed a theoretical framework that enables the construction of isomorphicmusical keyboards providing
access to a wide range of tones in extended just intonation. The key components of the framework are the
concepts of divisional tones, JI morphism, JI plane, and pitch width. This paper summarizes the theoretical
results of the preparatory phase of a larger project that aims to develop specialized musical software focusing
on extended just intonation.
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