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Abstract
In which (A) it is alliteratively alleged that the φ×1 Golden Rectangle™ is a φction of self-referential spatial elegance,
unworthy of the reverent φxation with which φlosophers of beauty have for too long worshipped it; and (B) it is
deφnitively demonstrated that the

√
φ × 1 rectangle is a far more satisφing, lean, golden mean, æsthetic φst-φghting

machine. We explore its recursive subdivision into self-tilings exhibiting emergent global structure and patterns, and
show its relationship both to golden ratio-based identities and to Ammann’s bee tile, with a little art phistory added.

Complaint

For centuries, indeed millennia, smart people who should know better have ex-, de-, pro- and
generally -claimed that the Golden Rectangle™ is fabulous, and wonderful, and oh-so-superbly
proportioned, the very ephitome1 of framed elegance among all things artfully rectangular, most
worthy of all manner of æsthetic reference, preference, and deference, yada, yada, yada.

Well, it’s time to put a stop to this facile, faithful, unfulφlling nonsense. Of all things auric, the
Golden Rectangle™ is—in my not so humble ophinion—far and away just about the worst example
of “wrecked-angular” elegance in the parthen. . . er, pantheon of φ-dom. In short, yes, I’m sorry to
say, the over-marketed, putatively sacred Golden Rectangle™ is a mathemæsthetic object unφt for
the burden of elegance and phiness(e) so worshipfully and steamingly heaped upon the poor thing.

As an Allegedly Self-Referential Object, the Golden Rectangle™ Is Nearly 62% Useless!

Phigure 1, left, shows yet another Miserable Golden Rectangle™ (hereinafter MGR) in its custom-
arily ordained, “canonical” (ahem) wider-than-high form. Its dimensions are either 1 × φ, where
φ = (−1 +

√
5)/2 = 0.618033 . . . , or φ × 1, where φ = (1 +

√
5)/2 = 1.618033 . . . . Choose your

x2 − x − 1 = 0 poison; here we will opt for the larger (by) one (φ = 1.618033 . . . ).
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Phigure 1: The usual MGR subdivision accumulates self-referentially useless, non-Golden squares.

The salient, semi-self-reverential property that everyone always oohs and aahs about is this: if
you carve off a square of side 1 from the MGR, you are left with another smaller 1 × 1

φ MGR,

1Yes, my ‘h’s and/or ‘p’s can be silent. For non-English-speaking φlomorphs, feel free to sound-substitute “phi” or “fi” (as
appropriate) for ‘φ’.
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rotated 90° (Phigure 1, center). And hence, one can perform another carving on the smaller
MGR, iterating ad inφnitum (Phigure 1, right), without drifting away from the same, simply divine
proportion, which drifting otherwise occurs when using a greater or (judgmentally speaking) lesser
ratio. From there—assuming one makes the appropriate binary symmetry choice forever—the usual
true discussion of logarithmic spirals and false discussion of nautilus shells [3] ensues. Yawn.

Although the MGR is the only rectangle for which this goldenectomy holds—thereby selφshly
drawing much unwarranted attention to itself—the blatant elegance problem is that, after dividing
the MGR into two pieces, the smaller piece (just under 2/5 of the original) is the only part that
is still golden; the majority (just over 3/5) is just . . . a flippin’ (i.e., symmetric) unit square! But
the unit (or any other) square has absolutely nothing golden about it to recommend itself. Nada.
0.0000000. Zip. Zilch. 7

ℵ0
. 041. The so-called “empty set.”

⋃∞
0

i=0 0 × 0; see, e.g., lost causes.
It’s like being presented with a piece of meat, billed as a φne steak, but which is fully 1/φ =

61.8 . . .% inedible fat, to be discarded (or fed to φdo) by those of us who are the more discerning
ephicures! Any φnagling butcher foisting this scam off onto his customers would be rightfully
subject to complaint, maybe even Madofφan conφnement for a φnancial pyramid2 scheme!

The φ × 1 rectangle is, then, only minimally golden-ish. Its boring and useless square gnomon
(that which is left over after removing a self-similar piece) is a symptom of the MGR’s inherent
inelegance and diminished mathematical beauty. MGR is, quite literally (well, okay, numerately)
an æsthetic misφt, due to a fundamental φ-ological mistake: Everyone’s been shoehorning φ’s one-
dimensional wonder into the wrong two-dimensional rectangle! Bear with me now in proving this.

Divi n
d ing a Rectangle into Self-Similar Pieces

Putting wordplay, snark, sound puns, and typogra-phi-cal mischief temporarily aside, without loss
of congeniality, consider an r × 1 rectangle, where r ≥ 1, shown wider than high. What value(s)
of r permit this rectangle to be subdivided into exactly N similar sub-rectangles R1, · · · ,RN ?

The trivial answer, for N =1 and r =1, says that a square is similar to itself. The obvious non-
trivial answer, for N =4, is also r =1, i.e., a square can be subdivided into four similar sub-squares.
And indeed, for N = k2, any rectangular r works. But what values of r work for N =2 or N =3?

The well-known solution for N = 2 is the
√

2 × 1 rectangle, which can be halved into two
similar sub-rectangles, each rotated 90°. This is the basis of European paper sizes, where, for
instance, a sheet of paper of size A3 can be cut into exactly two sheets of size A4. Subdivide just
one of those two sub-rectangles and, by induction, the

√
2 × 1 rectangle will work for any N .

As shown in Figure 2, when N = 3 there are three distinct (disregarding symmetry) solutions.
With a bit of algebra, one finds the three solutions are r =

√
2,
√

3, or . . .
√
φ.
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Figure 2: Three distinct solutions to dividing a rectangle into three self-similar smaller rectangles.

2Do not—I repeat, do not!—get me started on MGR and the pyramids, or I will need a deφbrillator!
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The third
√
φ × 1 = 1.2720196 . . . × 1 solution, which we will call GR, is unexpectedly

interesting, not just because of the appearance of
√

the golden ratio φ, but also because each of the
three similar sub-rectangles is a different size, accomplished using different orientations.

Let r =
√
φ. Scale each of GR’s side lengths by r4 = φ2, so that while remaining similar

it becomes an r5 × r4 rectangle (Figure 3, center). Label the three component rectangles in the
subdivision as A, B, and C, from largest to smallest. Sub-rectangle A is similar, so its short side
is r3 and its area is thus r4r3 = r7. The short side of sub-rectangle B must be (r5 − r3) = r (r4 − r2).
But recall that φ2 − φ = 1, i.e., r4 − r2 = 1. So the short side of B simplifies to just r , which by
similarity implies that B’s long side is r2. But that “in turn” means that sub-rectangle C must be
r1 × r0 = r × 1. So we see that r5 = r3 + r (horizontal lengths) and that r4 = r2 + 1 (vertical
lengths), both of which are the same golden ratio identity as φ2 = φ + 1. And summing areas, we
get r9 = r7 + r3 + r , which upon dividing by r is equivalent to the related identity φ4 = φ3 + φ + 1.
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Figure 3: Left: The subdivided
√
φ × 1 rectangle. Middle: Scaled by r4 = φ2. Right: Each of A, B, and C

has four possible coordinate systems based on which corner is treated as an origin.

So GR gets to be goldenly recursive everywhere—no ugly leftover squares that infinitely sum to
gnomonic uselessness with area

∑∞
i=0 φ

−i = 1
φ−1 = φ × 1 = MGR (à la Phigure 1, right). QED.

Recursive Subdivision Everywhere Down to a Constant Level

Using translation, mirroring, and rotation, any GR has four possible coordinate systems by which
to anchor a subdivision, where each corner can be an origin, labeled 0–3 (Figure 3, center and
right). Therefore, there are 43 = 64 ways to assign coordinate systems to the three component sub-
rectangles A, B, and C, given the current coordinate system of their parent GR. Once a coordinate
system is chosen for each of A, B, and C, one can recursively carve each into a next level of sub-
sub-rectangles, which composes the transformations iteratively down to some level. Because the
subdivision into three self-similar rectangles is asymmetric, the 64 possibilities have distinct forms.

The results are visually fascinating: wispy, self-similar cloud-like patterns emerge at many
scales, due to how the tree of linear transformations brings the largest (lightest) As and the smallest
(darkest) Cs together spatially in various ways. For a given recursive limit down n levels of A, B,
and C, the result for each is a self-similar tapestry of 3n GRs, in a variety of different sizes and
orientations. Figure 4 shows four such recursive subdivisions for n = 9 (each rotated 90° to better
fit on the page). Each features distinct, emergent self-similar patterns created by the exact same set
of 39 = 19683 GRs. When using the same line width to draw subdivision lines, smaller rectangles
appear darker or merge. Global structure emerges from local texture. Is this not way more beautiful
than one logarithmic spiral, which is self-similar at only one measly 0-dimensional point?
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Figure 4: Four of the 64 subdivision symmetries, each n=9 levels deep. By construction, each uses the
exact same set of 39 = 19683 sub-tiles. Top left: (A3 B3 C3) A new set of GRs emerges along
rotated lines. Top right: (A0 B1 C3) The smallest GRs coalesce into more sinuous patterns.

Bottom left: (A1 B0 C2) Seemingly chaotic swirls emanating from one corner. Bottom right: (A2
B1 C3) A self-referential diagonal sweep.
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Subdivision Lags Result in Aperiodic Tilings Using Only Four Sizes of GR

The golden ratio is a special constant because it represents an exact balancing point between
additive and multiplicative growth. Hence, a recursive subdivision of A down more levels than of
smaller B, and of B down a little more than of smaller C, yields only a small set of sub-rectangles
exactly comparable in size. So at each recursive level n, subdivide A to level n, B to level n − 2,
and C to level n − 3. These lags counterbalance the decreasing exponents on the right side of
the area identity φ4 = φ3 + φ1 + φ0. Each of the 64 “size-limited” results is a tiling of GR with
smaller copies of itself. But only four different tile sizes are produced. If, for each starting level n,
GR is scaled by φ, every such tiling for any given n then represents an identity that defines φn as
a sum of the first four powers of φ, i.e., φn = aφ3 + bφ2 + cφ + d, where the integer values of
a, b, c, d count the number of tiles of each of the four size classes, in order of decreasing area.
By construction, each of the four lag subdivisions in Figures 5 and 6 comprises the exact same
set of tiles. In Figure 6, right, one can easily verify that the lag subdivision of a GR with area
r19 × r18 = r37 contains (a + b + c + d) = (714 + 442 + 714 + 441) GRs of areas r7, r5, r3, and r ,
respectively. This corresponds to the identity φ(37−1)/2 = φ18 = 714φ3 +442φ2 +714φ+441, which
simplifies (using φ2 = φ + 1) to φ18 = 2584φ + 1597. That in turn is an instance of the general
identity φn = Fnφ + Fn−1, in this case using the Fibonacci number pair (F18,F17) = (2584,1597).3

The emergent global structures in these self-tilings are also unexpected, beautiful, intriguing,
and can be remarkably different from one another. But because of the much more homogeneous
collection of tile sizes, it becomes quite difficult to perceive the original A, B, and C, or otherwise
discern the rule by which tiles are placed. Figures 5 and 6 show four examples of non-periodic tiling
patterns (on their sides) exhibiting large-scale structures, both “regular” and seemingly irregular.
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Figure 5: Two lag subdivisions, using symmetry A3 B2 C0 (left) and A0 B2 C1 (right).

3It’s an interesting exercise to see what happens when you run n backwards for n < 0 in φn = Fnφ + Fn−1.
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Especially intriguing about the two tilings in Figure 6 is that the large-scale emergent lines—
whether diagonal or horizontal/vertical—occur in either pairs or as singletons, depending on the
width of the gap between them. A relationship to the distribution of 0s and 1s in the binary
Fibonacci word (sequence A003849 in [5]) would appear to be an excellent conjecture: the tree of
linear transformations and subdivisions are likely isomorphic to the same production rule system.
Figure 6, right, which I like to call a “Golden Plaid,” exhibits the same structure horizontally as
vertically. The stripes in one direction are larger than the stripes in the other by a factor of r =

√
φ.
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Figure 6: Two more self-tilings. Left: Symmetry A0 B3 C0. Right: Symmetry A0 B2 C3 (a golden plaid!)

Ammann’s Aperiodic Golden Bee Tile

After carving GR up into A, B, and C, remove C. The result is also a self-similar figure that can be
divided into just two different-sized copies of itself, each a mirror of the other, as in Figure 7, right.
This shape is known as Ammann’s “golden bee” tile [1]. With appropriate marking rules, just these
two sizes (the larger is the smaller scaled by r) can tile the plane aperiodically [2].
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Figure 7: Deriving Ammann’s bee tile from GR.
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In 1977, Robert Ammann had been exploring aperiodic tilings built from various shaped tiles
whose edges were based on powers of

√
φ. His work was first described in 1986 in Grunbaum’s

Tilings and Patterns [2]. But some years before, some of Ammann’s notes made their way via
Martin Gardner to Benoît Mandelbrot, who in 1980 asked one of his illustrators (the present author)
what to make of them. This is when I became aware of how awesome the

√
φ × 1 rectangle was.

Figure 8: “Golden Gnomon” shows myriad Ammann tiles, surrounding an unsubdivided GR.

After going to a talk by Ammann a few years later (before he disappeared and died in obscurity),
I explored and played with the bee’s recursive subdivision. Based on techniques similar to those
described above, an early mathematical art piece of mine, drawn in a pre-PostScript era on a pen
plotter, entitled “Golden Gnomon” (Figure 8), was first exhibited at Yale University in 1985 [4].

Locally largest sub-tiles form diagonal “lines” of bee tiles along, e.g., the upper-left to lower-
right diagonal of GR, and those line’s similar analogs at smaller scales. By virtue of local symme-
tries, these lines implicitly create ghostly oval shapes of many sizes, creating a fascinating, almost
tie-dye-like texture to the image. And, perhaps unsurprisingly, one can also find the Fibonacci
numbers as an emergent property.

Looking at Figure 8, consider the set of horizontal bands, where the topmost band is bounded
above by the line along the top of GR, and below by the line that passes along the bottom of the
smaller unsubdivided GR (in the upper right of GR). These lines appear to cleave GR into two
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rectangles, but when you look carefully, they do not at locally lightest spots where a largest sub-tile
finds itself. The height of each subsequent band (counting and measuring downwards) diminishes
by a factor of r2 = φ. Two diagonal lines of locally largest golden bee tiles intersect at various
points on the cleavage line between each band, where a locally largest Ammann tile interrupts the
cleavage line otherwise dividing one band from the next. So the line across the top of the figure is
completely straight; it has 0 interruptions. The next horizontal cleavage line down (by a factor of φ)
has 1 interruption, as does the line below it. The next cleavage line below that has 2 interruptions,
the next below has 3, then 5, then 8, then 13, etc.

Prayer for Relief

Call me a φnicky cynic, but the usual φ × 1 MGR plainly suffers from a golden identity crisis. It is
worthy of at least 61.8033. . .% less attention than it regularly receives as an overly celebrated—yet
minimally self-referential—geometric object. Whereas the more rephined

√
φ × 1 rectangle is a

lean, golden mean, æsthetic φst-φghting machine. In both orthogonal directions it is sublimely
and phierarchically suffused everywhere with Goldenness and Phibonacciness, evincing far more
satisφing aesthetic sensibilities, due to the invariably intriguing combination of self-similar regu-
larity, aperiodicity, and asymmetry.

So to the inφdel Miserable Golden Rectangle™, this aφcionado most conφdently shouts to
phigh heaven: Φ on thee, you perphidious φgment of φine Platonic design! A new rectangle’s in
town! Your days of divinity are phinitely numbered, your phistory is φnally phinished!

I, for one, root for
√
φ × 1. Ammann.4
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