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Abstract 

In this paper, we first briefly review aspects of inversive geometry and inversive fractals. Motivated by a desire to 
expand our geometric and artistic toolkit, we then introduce mixed-restriction limit sets as a new technique for use 
with iterated function systems and groups of circle inversions to create previously undiscovered 2D inversive fractals. 
We also apply this technique to diverse shape-based inversions that are closely related to circle inversion. Finally, we 
explore extending mixed-restriction limit sets and shape-based inversions into 3D to generate 3D inversive fractals. 

 
Circle Inversions and Inversive Fractals 

 
Given a circle C0 in the 2D Cartesian plane with center at the origin (0,0) and radius r, the equation for the 
circle inversion transformation ICo of a point (x,y) relative to the circle to yield a new point (u,v) is:  
u, v = I&', x, y = *+,

*,-	/,
, /+,

*,-	/,
	  with additional definitions that I&' 0, 0 = ∞ and I&' ∞ = (0,0) 

For a circle Ca,b with center at (a,b) the inversion transformation ICa,b can be composed from circle inversion 
centered at the origin and translations: ICa,b = Ta,b • ICo • T-a,-b. Figure 1a shows how inversion transforms a 
square grid and various circles and squares placed at different positions relative to the circle of inversion. 
 

 
                     1a)																																														1b)                                         1c)																																														1d)			    
Figure 1: a) Square grid (bounded by figure border) and shapes transformed by circle inversion relative 
to the large circle, b) iterative inversion of five tangent circles, c) fractal limit set of same circle inversion 
configuration as in 1b, d) same as 1c but with larger inner circle intersecting outer circles with angle π/3 

 
Circle inversion transformations have many interesting properties: 

• Any point p on the circle of inversion is unchanged by inversion, IC(p) = p 
• IC transforms all points outside of the circle to inside the circle, and vice versa 
• IC is a contraction for all points outside the circle, and an expansion for all points inside the circle 
• IC is an involution at every point: IC(IC(p)) = p 
• IC is an anticonformal mapping (preserves local angles but reverses orientation) 
• IC transforms circles to either circles or lines, and lines to either lines or circles 

With certain configurations of tangent circles, iterative inversion of each circle boundary relative to the 
initial circles appears to converge towards complex structures, as illustrated in Figure 1b. To examine this 
further we recast the same group of circle inversions in Figure 1b as an iterated function system (IFS) [1]. 
Starting with a random point, the IFS iteratively transforms the point by picking randomly amongst the 
inversions to apply at each iteration and accumulating the resulting points. After discarding initial points, 
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this forms an approximation of the limit set of the group of inversions, which is a compact but complex 
fractal (see Figure 1c) as first shown for groups of circle inversions by Mandelbrot [2].  

 
Restricted Limit Set Fractals and Mixed-Restriction Limit Set Fractals 

 
Now consider a group of circle inversions where some pairs of circles are intersecting rather than tangent. 
If the angles of all the circle intersections are submultiples of π such that 𝜃 = π /n where n is a positive 
integer (kaleidoscopic angles [3]), then the limit set remains compact [4] (see Figure 1d). But for non-
kaleidoscopic angles the limit set will not be compact and can extend over the entire plane (see Figure 2a). 
However, Clancy et al introduced restricted limit sets [5], which remain compact for any intersection angle. 
To construct a restricted limit set, start with a collection of circles C1,…Cj and corresponding inversions 
IC1,…ICj as the group of transforms for an iterated function system. Then at each iteration step n, if the 
resulting transformed point Pn is inside circle Ck then ICk is restricted from being used as the transform for 
the next iteration n+1. This ensures there will be no expansive inversions, and thus that the restricted limit 
set that the IFS approximates is contained within the union of circles (see Figure 2b). 
 We now propose mixed-restriction limit sets as a simple but powerful modification to restricted limit 
sets that can generate diverse new fractals. In this construction, each inversive transform ICk can either be 
unrestricted (selectable in each IFS iteration to transform any point) or restricted (can only be selected as a 
transform for points outside the circle Ck). Figures 2a-c shows a comparison of different restrictions for a 
configuration of four outer tangent circles surrounding a fifth central circle that intersects the other four at 
a non-kaleidoscopic angle. In Figure 2a there are no restrictions, and the resulting limit set is noncompact. 
In Figure 2b all inversions are restricted, yielding a compact fractal limit set. In Figure 2c the outer circles 
are unrestricted but the inner circle is restricted, resulting in a different fractal limit set. In this example the 
limit set is still contained within the union of circles, but since mixed-restriction limit sets allow expansions 
this is not always the case (unlike restricted limit sets). Figure 2d shows an example of this, a configuration 
of seven circle inversions, all of which are restricted except for the centered circle which is unrestricted. 
Here the fractal limit set extends beyond the union of circles, yet it is still discrete and compact. 

 

 
                    2a)																																															2b)                                         2c)			                       2d)	

Figure 2a-c: Comparing circle inversion fractals identical except for different restrictions,  
a) unrestricted, b) all five circle inversions restricted, c) only center circle inversion restricted. Circles of 

inversion are also shown. For each accumulated point, color indicates the last inversion applied. 
Figure 2d: different group of seven circle inversions, all restricted except for center circle 

 
Generalizing Inversion to Other 2D Shapes 

 
Gdaweic [6] introduced a generalization of inversion in a circle to inversion in star-shaped sets with circles, 
ellipses, and regular polygons all being special cases. For our purposes we propose a simpler subset of star-
shaped sets that we will call centered star shapes, defined as any contiguous 2D shape S with boundary B 
and centroid O in which for all points M on B the line segment OM is contained entirely inside S (or on B). 
We can then define IS, the shape inversion transformation for any point P = (x,y) with respect to S, as 
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identical to the equation for circle inversion except that the circle radius r is replaced with the distance d 
from the centroid O to the intersection of the boundary B with a ray cast from O and passing through P: 

  u, v = I: x, y = *;,

*,-	/,
, /;,

*,-	/,
	   

 

 
                    3a)																																															3b)                                        3c)																																														3d) 

Figure 3: Square grid (bounded by figure border) transformed by inversion in a) ellipse, b) square, c) 
supershape, d) rhodonea. The shape each inversion is based on is also shown as a thicker line. 

 
Figure 3 illustrates how a square grid is transformed by inversion in various centered star shapes. In addition 
to previously reported inversion in ellipses [7] (Figure 3a) and polygons [6] (Figure 3b) we have explored 
inversion in other shapes, including supershapes [8] (Figure 3c), and rhodonea curves [9] (Figure 3d). For 
shapes that are self-intersecting (such as some supershapes and rhodonea, depending on parameters) we 
convert them to centered star shapes by considering only the outermost shell relative to the centroid as the 
boundary of the shape (see Figure 3d). These inversions preserve many properties of circle inversion, for 
example any point on the shape boundary is unchanged, all points outside the shape are transformed to 
inside the shape and vice versa, and they are involutions so IS(IS(p)) = p. 
 

Shape Inversion Fractals 
 

 
                     4a)																																															4b)                                        4c)																																														4d) 

Figure 4: Inversive fractals with layout identical to Figure 2c except with restricted center circle 
inversion replaced by restricted inversion in a) ellipse, b) square, c) supershape, d) rhodonea 

For each accumulated point, color indicates proximity to the boundary of the last inversion applied. 
 
Gdaweic [6] showed that, like circle inversions, groups of intersecting shape inversions can generate 
compact fractals if fully restricted limit sets are used. We have also experimented with intersecting shape 
inversion groups, but applying our new technique of mixed-restriction limit sets instead. Examples are 
shown in Figure 4 for a configuration of four unrestricted outer circles together with a restricted inner 
centered star shape that intersects the outer circles at non-kaleidoscopic angles. For each case, if all the 
inversions were unrestricted the limit set would be noncompact, and if all the inversions were restricted the 
limit set would be different than in the shown mixed-restriction case (similar to the different limit sets for 
different restrictions shown in Figures 2a-c for circle inversions). 
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3D Inversion and 3D Inversive Fractals 
 
Spherical inversion is the natural extension of circle inversion from the 2D plane to 3D space. Groups of 
inversions in spheres can be used to construct 3D limit sets [4]. If the spheres intersect at kaleidoscopic 
dihedral angles, iterated inversions can produce a compact fractal limit set [3]. We have explored applying 
our mixed-restriction technique to intersecting sphere inversions with non-kaleidoscopic dihedral angles. 
Figures 5a-c shows the limit sets of inversions in an octahedral configuration of six outer spheres with a 
central sphere intersecting all outer spheres at non-kaleidoscopic dihedral angles. Figure 5a shows that the 
limit set for unrestricted inversions is noncompact, whereas Figures 5b and 5c show that different mixed 
restrictions on the inversions yield different compact fractal limit sets. 
 Ellipsoid inversion is the extension of 2D inversion in an ellipse to 3D inversion in an ellipsoid [5]. 
As an initial foray into exploring inversion in different 3D shapes we have created mixed-restriction 
ellipsoid inversions that generate compact fractal limit sets, as illustrated in Figure 5d. 

 
                     5a)																																															5b)                                        5c)																																														5d) 
Figure 5: Inversive 3D fractals, a) intersecting octahedral group of spheres with unrestricted inversions 

for all spheres, b) same as 5a but inversion in inner sphere restricted, c) same as 5a but inversion in 
outer spheres restricted, d) mixed-restriction limit set from a group of ellipsoid inversions 

 
Source code is available on GitHub as a plugin for JWildfire [10], an open source application for creating 
IFS-based algorithmic art. Additional information and examples are available at http://genomancer.org. 
 

References 
 

[1]  M. F. Barnsley and S. Demko, “Iterated Function Systems and the Global Construction of Fractals”,  
Proceedings of the Royal Society of London, vol. 399, no. 1817, pp. 243–275, 1985  

[2]  B. B. Mandelbrot, “Self-inverse Fractals, Apollonian Nets, and Soap”, The Fractal Geometry of 
Nature, Chapter 18, pp. 166-179, 1982 

[3]  V. Bulatov, “Inversive Kaleidoscopes and Their Visualization”, Proceedings of Bridges 2014: 
Mathematics, Music, Art, Architecture, Culture, pp. 329–332, 2014 

[4]  R. M. Baram and H. J. Herrmann, “Self-similar Space-filling Packings in Three Dimensions”,  
Fractals, vol. 12, no. 03, pp. 293–301, 2004  

[5]  C. Clancy and M. Frame, “Fractal Geometry of Restricted Sets of Circle Inversions”, Fractals, vol. 
03, no. 04, pp. 689–699, 1995 

[6]  K. Gdawiec, “Star-shaped Set Inversion Fractals”, Fractals, vol. 22, no. 04, pp. 1450009.1-7, 2014  
[7]  J. L. Ramírez and G. N. Rubiano, “A Generalization of the Spherical Inversion”, International 

Journal of Mathematical Education in Science and Technology, vol. 48, no. 1, pp. 132–149, 2017 
[8]  J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract 

shapes”, American Journal of Botany, vol. 90, no. 3, pp. 333–338, 2003 
[9]  G. Helt, “A Rose By Any Other Name...”,  Proceedings of Bridges 2016: Mathematics, Music, Art, 

Architecture, Education, Culture, pp. 445–448, 2016 
[10]  A. Maschke, JWildfire software, 2011. Current release v3.10 (April 2017), http://jwildfire.org  

Helt

470


