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Abstract 
 

Fractal curves that develop spatially in a linear manner over several generations give rise to captivating sculptural 
forms. A variety of such structures are explored using different fractal curves, with the use of multiple copies 
allowing the creation of closed sculptural forms that are more vase- or pot-like. More complex, visually rich, and 
natural forms are generated by developing fractal curves radially in three dimensions. Computer graphics, 3D 
printing, paper folding, and ceramic sculpture are used to explore and elaborate these constructions.  

 
 

Introduction 
 
Mathematics can serve as a tool to guide the creation of new sculptural forms that artists would probably 
not come up with otherwise. A case in point is the spatially-developing fractal curves described by Irving 
and Segerman [5]. In these structures, the first several generations of a fractal curve are separated in the 
direction orthogonal to the plane of the curve. Successive generations are then joined by polygons or via 
interpolation by curved surfaces, resulting in a fractal surface in the limit.  

 One specific example is the use of a curvilinear version of the terdragon curve (Fig. 4c), which 
served as the starting point for a ceramic sculpture entitled “Three-fold Development”, shown in Figure 
1a. Three copies of the curve were joined to form a closed curve, where the starting point (base of the 
sculpture) is a circle. A modified version of the Sierpinski curve [6] was used as the basis for the 
sculpture of Figure 1b, “Four-fold Development”.  

 The surfaces described above resemble hyperbolic surfaces. Hyperbolic space has constant negative 
curvature. When a hyperbolic surface is embedded in Euclidean 3-space, every point on the surface is a 
saddle point. As the structures above progress through iterations of a fractal curve a cross section of the 
surface increases in length.  

 Related fractal hyperbolic surfaces have been created by using fractal tilings embedded in 3-space 
[3]. Fathauer has also demonstrated that certain developing fractal curves can be created by folding 
simple Pythagorean trees [4]. In both these cases the surfaces are not strictly hyperbolic, as the individual 
tiles have zero curvature.  

 The sculptures in Figure 1 develop linearly, so that the bottom and top curves bounding the surface 
lie in parallel planes, as illustrated in Figure 2a. Pythagorean trees and fractal tilings can also be 
considered to be developing fractal constructs, where the development as generations are added is radial 
in the plane (Figure 2b). The development of fractal curves vertically but also radially results in a surface 
for which the topmost curves lie in roughly spherical or dome-shaped envelopes (Figure 2c). In addition 
to natural trees, an analog in nature is brain coral (Figure 3). Surfaces of this sort can be more interesting 
visually and more compelling as sculptural forms than flat surfaces. Some different approaches to 
achieving this are described in the following sections.  
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Figure 1:  Two ceramic sculptures by Robert Fathauer based on the development of 
fractal curves in a direction orthogonal to the plane of the curve. a) Three-fold 
Development (2013), and b) Four-fold Development (2014). 
 

 
Figure 2:  Spatial development of fractals a) linearly in a direction orthogonal to the 
plane of the curve, b) radially in the plane, and c) radially in three dimensions.  
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Figure 3:  Brain coral is a natural structure with a convoluted curve bounded by a 
roughly spherical envelope.  

 
 

 

 
Figure 4:  Fractal curves discussed in this paper: a) Hilbert curve, b) Dragon curve, c) 
Terdragon curve (canonical triangle-based version on top, hexagon-based version on 
bottom), d) Cesàro curve (the top version is shown to illustrate the path of the canonical 
90° version), e) 7-dragon curve, and f) Sierpinski Arrowhead curve. 
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 Several fractal curves are employed in creating these sculptural forms. Figure 4 shows these, along 
with the linear scaling factor s between successive generations, the increase in the number of features N 
between successive generations, and the fractal dimension D of the curve. The self-similarity dimension is 
used for D, given by log N / log s. Note that five of the six curves shown are plane filling, with D = 2. The 
Sierpinski Arrowhead curve, which is not plane filling, has a smaller fractal dimension.  
 
 

Sculptures Based on Models with Polyhedral Envelopes 
 

The different generations of at least some fractal curves can be used to cover a polyhedron with a 
single line. Two examples are shown in Figure 5, where the first four generations of a Hilbert 
curve are applied to the faces of a cube, and the first three generations of the hexagon-based 7-
dragon curve are applied to the faces of an octahedron. The second of these was modified for use 
in a ceramic sculpture based on half the covering of the octahedron, with the first generation 
forming a two-lobed smooth curve, as shown in Figure 6a. The sculpture, entitled “Radial 
Development” (2014), is shown in Figures 6b-d. The smooth surfaces of the sculpture were 
worked out by starting with a saddle and then building outward to form the next two iterations of 
the curve. Keeping the curvature negative everywhere was a goal in this process, but there are obviously 
some areas where the curvature is positive. This resulted from the difficultly in creating a three-
dimensional surface from curves printed on an octahedron.  
 
 

 
Figure 5: a) Hilbert curve applied to a cube (a single face is shown). b) The hexagon-
based 7-dragon curve applied to an octahedron (a single face is shown). 

 

 The Hilbert-curve covered cube of Figure 5a was subsequently used as the basis for a 3D print with a 
spherical envelope. The 3D model was developed by David Bachman and Henry Segerman [1]. Python 
code was used to generate a Hilbert curve in a square. Additional code was then used to project the 
Hilbert curve onto 1/6th of a sphere with minimal distortion. Next, Grasshopper script was written to 
connect the six curves into one continuous curve at each generation. These were spatially separated 
radially, with higher generations having a larger overall diameter. Finally, an interpolated surface was 
created between the various levels. 3D prints of 1/3 of the structure and the full structure are shown in 
Figure 7. 
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Figure 6: a) Paper model of two-lobed smooth curve used as a basis for a ceramic 
sculpture entitled “Radial Development” (2014). b) The sculpture after building out to 
the second generation of the curve. c, d) The finished sculpture from two different angles.  

 
 

   
 

Figure 7: Photographs of a 3D-printed radially-developing Hilbert curve, where 1/3 of 
the full sphere is seen at left, from the center out, and the full sphere at right.   
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Structures Based on Paper Folding 
 

As shown in [4], some developing fractal curves, such as the dragon curve, can be made in paper by 
folding a Pythagorean tree consisting of squares and isosceles right triangles, and then joining edges with 
tape. The squares provide the separation of the generations. This is readily modeled using software such 
as Mathematica. If the squares are replaced at each step with trapezoids that have their bases attached to 
the outer triangles, the structure then fans out as it grows, as illustrated in Figure 8 with a Cesàro curve. 
Modeling this sort of structure is much more difficult compared to the linear case, because different 
angles are required in different locations and generations. Using a paper construction finesses this 
problem because the paper flexes to adopt the necessary angles.  

Multiple copies of these developing curves made with trapezoids can be used to form domed 
sculptural forms for which cross sections are closed curves. A domed sculptural form created by joining 
four developing Cesàro curves made with trapezoids is shown in Figures 8d and 8e.  

 

 
 

Figure 8: a) Photograph of the first three stages of a developing Cesàro curve made 
from a Pythogorean tree with squares (left) and trapezoids (right). Planar building 
blocks for the square case (b) and trapezoid case (c). A domed structure made from four 
copies of the trapezoid developing Cesàro curve, seen from the side (d) and top (e).  
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 The above structures reveal a couple of features that make for more successful sculpture. One is the 
evolving structure of the surfaces being visible. This structure, which evokes some coral and tree forms, is 
fascinating and often beautiful. A lateral boundary of some sort in the final generation is also more 
engaging. The full Hilbert sphere suffers from too much uniformity, making it less interesting as 
sculpture. Sculpture works better when it has a markedly different appearance from different vantage 
points. Indeed, this is the key property making good three-dimensional forms more interesting than two-
dimensional forms.  

These properties were conscious goals in the following structure. A simple trifurcating tree 
consisting of squares and half hexagons can be folded to form a Sierpinski Arrowhead curve [4]. 
Attaching six of these together, alternating the side that faces inward, results in a closed form as 
illustrated in Figure 9a. If the squares are replaced with trapezoids, the domed three-fold sculptural form 
of Figure 9b is obtained. With three lobes that droop down and three that rise up to nearly meet in the 
middle, a graceful and varied boundary results. A natural object that shares this overall form and 
symmetry is an iris flower. This paper model was used to guide the constructions of a clay sculpture, 
where smooth surfaces were employed. The surfaces were developed in a manner that attempted to retain 
negative curvature everywhere. The resultant sculpture, completed in March of 2017, is entitled 
“Negative Curvature”.  
 
 

Conclusions 
 

This paper describes an ongoing quest to use iteration of simple geometric building blocks to make 
models that can guide the creation of novel and compelling sculptural forms. Future work includes 
adapting additional forms of this sort to traditional artistic mediums such as clay. The translation of 
models containing sharp angles and bends to smooth and graceful curves, whether done computationally 
or manually, can be challenging. Over time, through working with numerous structures of this sort, the 
manual translation becomes easier. 
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Figure 9: a) Computer graphic of two developing Sierpinski Arrowhead curves whose 
top edges define two sides of a hexagon. b, c) Sculptural form created with paper by 
using trapezoids rather than squares in a cardstock trifucating tree, with six developing 
Sierpinski Arrowhead curves combined in a ring. This was carried through two 
generations for 2/3 of the structure and three generations for the remaining third. In b, a 
side view shows primarily the three-generation portion, while the top view is shown in c. 
d-f) Stages in the construction of a clay sculpture based on the paper model. d) Base and 
first generation, with three lobes. e) After completion of the second generation. f) After 
completion of the third generation, before firing; note the view is similar to b. g) After 
firing and glazing, viewpoint similar to c. h) Another view of the finished sculpture. 
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