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Abstract 
 

This paper presents kinetic models based on the 4-dimensional regular polytopes. The sequential ‘flattening’ is 
realized through the use of hyperbolic patchwork surfaces, which portray the bitruncated versions of the polychora. 
As pedagogical tools, these models offer a hands-on experience of 4D geometry. 

 
 

Introduction 
 

Four-dimensional space (hyperspace, 4-space) is the result of adding an extra spatial dimension 
perpendicular to our three dimensions of length, height and width. The research on its properties is made 
possible by generalizing the geometric principles acquired by studying more familiar spaces of lower 
dimensions. Originated in philosophy and mathematically formulated in geometry, the concept has roused 
interpretations in mysticism, in theoretical physics, in fiction and in visual arts. Lately the availability of 
digital visualization technologies has given artists a chance to study higher space with a greater fidelity to 
the precise geometry of the concept. 

Because the fourth dimension of space cannot be directly portrayed in our physical world, the focus 
of many inquiries into the subject has been on the challenge of developing a visual understanding of 
4-dimensional reality. Luckily, just as 3-dimensional structures can be drawn, unfolded, sliced, 
photographed or otherwise projected onto a 2-dimensional medium like paper or a computer screen, these 
graphical techniques can be generalized to produce 3D models of 4-dimensional structures described by 
mathematicians. The precise subject matter of these visualizations is usually the family of regular 
polychora – 4-dimensional counterparts of the Platonic solids. (For a detailed account of the regular 
polychora, see Coxeter [1] or Wikipedia [7]). In the past Bridges conferences, the topic has been treated 
by e.g. Saul Schleimer and Henry Segerman [3], and Carlo H. Séquin [4].  

Robert A. Heinlein’s 1941 science fiction short story “…And He Built a Crooked House” [2] 
introduces a house built in the shape of a 3-dimensional unfolding of a hypercube. As a result of an 
earthquake, the house folds ‘up’ to an actual 4D hypercube, and the inhabitants are trapped inside. Like 
ants walking around the surface of a cube from square to square, they navigate the eight cubical rooms of 
the house taking straight-line routes northeast to southwest, southeast to northwest, up and down, only to 
find themselves back were they started from after a round trip. Although such an experience would 
arguably be most unnerving, the chance to inspect the spatial interrelations of the cells of a regular 
polychoron would provide one with an involved insight of 4-dimensional space. This paper describes a 
method of facilitating such investigations with hand-held kinetic models that employ hyperbolic 
patchwork surfaces based on the truncated versions of regular polychora. 
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Truncation 

 
Truncated polyhedra. The truncation1—as discussed here—refers to the process of cutting away every 
vertex of a regular solid with a plane perpendicular to a line going through the center of the solid and the 
vertex. As a result, the original vertices are replaced by polygons whose shape is determined by the vertex 
figure of the original solid. The depth of the truncation is a free parameter. Figure 1 shows truncation of a 
cube all the way to the dual octahedron, and the Archimedean solids met along the way. Notice how in 
the cuboctahedron the edges have shrunk to a point (rectification), and in the truncated octahedron the 
faces resulting from the truncation are already truncating each other (bitruncation). Finally in the 
octahedron also the original faces of the cube have shrunk to points (birectification).  
 

 
 

Figure 1: Cube, truncated cube, cuboctahedron (rectified cube), truncated octahedron (bitruncated 
cube), octahedron (birectified cube). 

 
Figure 2 shows truncation of a tetrahedron all the way to the dual tetrahedron, and the Archimedean solids 
met along the way. 
 

 
 
Figure 2: Tetrahedron, truncated tetrahedron, octahedron (rectified tetrahedron), truncated tetrahedron 

(bitruncated tetrahedron), tetrahedron (birectified tetrahedron). 
 
Truncated polychora. The 4-dimensional regular polychora are truncated by cutting away every vertex 
of the polychoron with a hyperplane (3-dimensional Euclidean space) perpendicular to a line going 
through the center of the polychoron and the vertex. As a result, the original vertices are replaced by 
polyhedral cells whose shape is determined by the vertex figure of the original polychoron. The depth of 
the truncation is a free parameter. Figure 3 shows a sequence of truncations from the hypercube to 
varying depths, the new polyhedral cells highlighted in grey.  

                                                        
1 The word truncation is due to Kepler’s naming of the Archimedean solids. 
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Bitruncated hypercube. For the purpose of the patchwork surface model described here, we truncate the 
hypercube to its bitruncated form (bottom right in Figure 3), where the cells resulting from the truncation 
have started to truncate each other. The bitruncated hypercube is composed of 8 truncated octahedra 
corresponding to the original cells of the hypercube, and 16 truncated tetrahedra corresponding to the 
original vertices of the hypercube.  

 
 

 
 

Figure 3: Hypercube, truncated hypercube, 
rectified hypercube, bitruncated hypercube 

(perspective projections). 
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We remove all the square and triangular faces of the polychoron, leaving us with a closed surface 
composed of 64 hexagons. As the hexagons meet 4 per vertex, the surface is hyperbolic.  

 
 

Hyperbolic Patchwork 
 
Colors and connections. Looking at the perspective projection of the bitruncated hypercube, it is evident 
that a kinetic model based on it should be able to change the size of its parts. This issue can be resolved 
by making the surface out of cloth, so the faces can wrinkle. The hexagons are cut from cotton cloth of 
eight different colors, coming in pairs of (roughly) complementary colors. The complementary color pairs 
chosen here are cyan – orange, magenta – green, yellow – purple, and black – white. Sixty-four hexagons 
are sewn together first in groups of eight to create eight truncated octahedra, each of its own color. The 
cells are then connected by sewing together the edges around the removed square faces of the truncated 
octahedra (Figure 4). The cells of complementary colors are not placed as neighbors, but as opposing cells 
of the structure. The finished model—the “Crooked House”—is shown in Figure 5.  
 
 

 
 

Figure 4: Connections of the eight truncated octahedra in the bitruncated hypercube: 
cyan (C), yellow (Y), white (W), magenta (M), black (B), green (G), orange (O), purple (P).  

 
Determining the topology. The openings connecting the cells cause several handles in the patchwork 
surface. The exact number of handles can be verified by the Euler characteristic for surfaces V – E + F, 
for which we need the numbers of vertices (V), edges (E), and faces (F) of our surface. The number of the 
vertices must be the number of the hexagons (64) times the number of the corners in a single hexagon (6), 
all divided by the number of hexagons meeting at a vertex (4). Thus, the number of vertices in the 
patchwork equals 96. The number of the edges must be the number of the hexagons (64) times the 

Luotoniemi

20



number of the sides in a single hexagon (6), all divided by the number of hexagons meeting on an edge 
(2). Thus, the number of edges, or seams, in the patchwork equals 192. Together these numbers give us an 
Euler characteristic of V – E + F = 96 – 192 + 64 = –32. For closed orientable surfaces such as our 
patchwork2, the relation of Euler characteristic (χ) and the genus (g) of the surface is given by χ = 2 – 2g, 
so the genus of the surface is 17. This means the patchwork surface is topologically a torus with 17 
handles. 
 

 
 

Figure 5: The “Crooked House” – A hyperbolic patchwork model of the bitruncated hypercube. 

                                                        
2 We know the patchwork is two-sided, because it has truncated octahedra on one side and truncated tetrahedra on the other. In 
an orientable space (like the one in which our surface is sitting), a surface is two-sided if and only if it is orientable. [6] 
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Planes of Rotation 
 
Let us first examine the rotations of a cube along the three perpendicular planes xy, xz, and yz (Figure 6).  
Notice that for a 2-dimensional observer living in the surface of the picture plane of Figure 6, only the 
rotation along the xy plane would look legitimate, i.e. rigid transformation. For the 2D creature, the 
rotations along the xz and yz planes would seem like the figure is turning inside out. The square face 
originally on the exterior, enveloping the planar figure, is replaced with neighboring one. From our 
experience with 3-dimensional objects, we know that the squares appearing shrunken inside the 
enveloping square, are actually sticking out of the picture plane into the third spatial dimension. 

 
 
       Figure 6: Quarter rotations of a cube.       Figure 7: The appearance of rotations along six 
          along three perpendicular planes              perpendicular planes in the patchwork model. 
 
An analogous effect is witnessed in the patchwork model (Figure 7), as only the rotations along the xy, xz, 
and yz planes look like legitimate, rigid rotations. A quarter rotation along the xw, yw, or zw plane appers 
as a partial ‘inside-out turning’ of the surface, where a cell neighboring the enveloping outer cell is pulled 
out through the square opening connecting the two, and the outer cell gets pushed inside through the 
opening on its opposite side. The bitruncated hypercube has now changed its orientation with respect to 
our 3D space, and the truncated octahedron in our hands has changed its color as a consequence. The cells 
stuffed inside the enveloping cell should be thought of as sticking out of our space into the fourth spatial 
dimension. 

 
 

Patchwork Visualization of Other Polychora 
 
Besides the hypercube, we can examine the bitruncated forms of the other regular polychora to determine 
their suitability for hyperbolic patchwork visualization: 

Hexadecachoron. The truncation of a solid will eventually yield its dual solid, so the truncation of the 
hypercube will result in its dual, the hexadecachoron, also called the 16-cell. As the bitruncated form sits 
between the original solid and its dual, bitruncated hypercube and bitruncated hexadecachoron are 
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actually the same thing. This means that the patchwork model of the hexadecachoron is exactly the same 
surface as described above, but viewed from the other side of the surface. The volume on that side 
consists of 16 cells shaped like truncated tetrahedra, connected to each other via triangular openings. 

The bitruncated hypercube cloth model could be equipped with an additional punctured opening allowing 
access to the volume on the other side of the surface. This would allow the viewer to explore the network 
of 16 cells of the dual hexadecahedron as well. Unfortunately this would require the patchwork model to 
have two fabric layers to hide the raw edges of the seams, which would make it awkward to pass all the 
cloth through the smaller, triangular openings. 
 

 

 

Figure 8: Bitruncated 
pentachoron 

(perspective projection). 

Figure 9: Connections of the 
five truncated tetrahedra in 
the bitruncated pentachoron.  

Figure 10: Hyperbolic 
patchwork model of the 
bitruncated pentachoron. 

 
Pentachoron. The bitruncation of the pentachoron (5-cell) results in a polychoron composed of 10 
truncated tetrahedra (Figure 8). When the triangular faces are removed, the remaining 20 hexagons form a 
closed surface. Figure 9 shows how the cells of the bitruncated pentachoron are connected to each other 
via triangular openings. This surface is hyperbolic with 4 hexagons meeting at a vertex, just like the 
surface discussed above. As its topology is significantly simpler – a torus with six handles3, it is clearly a 
suitable subject for a simple patchwork implementation (Figure 10). 
Icositetrachoron. The bitruncation of the icositetrachoron (24-cell) yields a polychoron composed of 48 
truncated cubes. When the triangular faces are removed, the remaining 144 octagons form a closed 
surface. This surface is hyperbolic with 4 octagons meeting at a vertex. Its topological shape is relatively 
complex – a torus with 73 handles. It might not be feasible as a functional patchwork model, as pushing 
and pulling the abundance of cloth through the triangular openings might be too laborious. 

Hecatonicosachoron and hexacosichoron. The bitruncation of either the hecatonicosachoron (120-cell) 
or its dual the hecatonicosachoron (600-cell) yields a polychoron composed of 600 truncated tetrahedra 
and 120 truncated icosahedra, corresponding to the vertices of the hecatonicosachoron and the 
hecatonicosachoron, respectively. When the triangular and pentagonal faces are removed, the remaining 
1200 hexagons form a closed surface. This surface is hyperbolic, again with 4 hexagons meeting at a 

                                                        
3 The same proof for the orientability works here too, as the patchwork has 'vertex-based' truncated tetrahedra on one side of the 
surface and 'cell-based' truncated tetrahedra on the other. 
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vertex. Its topology is exceptionally complex – it is a torus with 299 handles and is not feasible as a 
functional patchwork model. 
 

Conclusion 
 
Even if the full understanding of the bitruncated hypercube patchwork model described here requires 
some knowledge of 4-space, I hope that it will also evoke immediate visual interest even in the lay 
audience. A person unacquainted with 4-dimensional geometry might describe the “Crooked House” as 
some kind of a color changing pouch – a 3-dimensional object interesting in its own right. In the context 
of 4D geometry the model presents itself as a pedagogical tool offering a chance to explore the symmetry 
and the interconnections of the cells of the hypercube, and to demonstrate the rotations along the six 
perpendicular planes concurrent on the origin in Euclidean 4-space. 

Future improvements on the model would include careful consideration of a material – as seen in Figures 
5 and 10, the cotton cloth gives a saggy and wrinkled appearance. Although more rigid material would 
articulate the cells more clearly, it might impair the movement of the surface through the openings. As for 
the actual geometry, making the patchwork out of hyperbolic, crocheted polygons instead of flat ones 
would distribute the negative curvature more evenly on the surface. Alternatively, the hexagons could be 
cut to have concave edges, so that the corner angles are exactly 90°. This would distribute the curvature 
along the edges. Using fleece instead of woven cotton cloth would let the curvature flow from the edges 
into the interior of each hexagon. For a hyperbolic blanket made with this technique, see [5]. 
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