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Abstract 

 
In their 1999 Bridges paper, “Polyhedral Sculpture with Hyperbolic Paraboloids,” Erik Demaine, Martin Demaine, 
and Anna Lubiw discussed gluing together origami “hypars” to form structures they called “hyparhedra.” By 
experimenting with this method, I discovered that using a rhombic triacontahedron instead of a dodecahedron as the 
underlying polyhedron for the “hypar dodecahedron” results in a more symmetric model. The hypars are folded 
from rhombic paper instead of squares, with the size of the rhombic paper determined by experimentation. Three of 
the resulting structures, “Day,” “Night,” and “Pahoehoe,” were included in the Art Exhibits at the Bridges 
Conferences in 2015 and 2016 and “Day” won the Best of Show People’s Choice Award in 2015. 

 
Introduction 

 
A hyperbolic paraboloid is a surface that resembles a saddle, see Figure 1. A nice model that 
approximates this shape can be made by folding a square piece of paper, see Figure 2. Directions and 
diagrams for folding origami hypars can be found in [1]. Throughout this paper I will use the term hypar 
to refer to origami version of this shape.  

                                            
 

           Figure 1: A hyperbolic paraboloid            Figure 2: An origami hypar 
 
 Hyparhedra are formed by glueing hypars together to form structures with underlying polyhedral 
symmetry. Demaine et al’s method focuses on the polygonal faces of the polyhedron to be modeled. For 
each n-gon face they glue n hypars together to form a polygonal “hat.” These hats are then glued together 
to form a “hyparhedra” with each “hat” corresponding to a face of the polyhedron being modeled. 
 

 This method works beautifully to form a “cube” but produces a lopsided model when applied to the 
dodecahedron. For example, compare the hypar cube and the two hypar dodecahedra in Figure 3. The 
square faces of the “cube” are formed by four hypars in alternating colors. The pentagonal faces of the 
“dodecahedron” are formed from five hypars, one of each color. The hypar cube is a stable symmetric 
structure but in the two dodecahedra some points where the hypars meet are convex and others are 
concave and the vertices of the pentagonal faces do not lie in a plane. 
 



            
 

Figure 3: A symmetric hypar cube (left) and lopsided hypar dodecahedra by the author (center) and by 
Demaine et al from [1] (right). 

                          
 

We Need a Different Foundation 
 
Why can we make a nice hypar cube but not a nice hypar dodecahedron? My breakthrough in solving this 
problem was to realize that these structures had more than one underlying polyhedron. To understand why 
the hypar cube is symmetric we must first realize the underlying structure can also be thought of as a 
rhombic dodecahedron, see Figure 4. When two hypars are glued along two edges, the four outside edges 
will lie on a rhombus. One such rhombus is outlined in the image in the center of Figure 4. The ratio of 
the length of the long diagonal to the short diagonal of this rhombus is approximately 2.  The faces of a 
rhombic dodecahedron are rhombi with this ratio and this is the ratio we get when the hypars are folded 
from square sheets of paper. 
   

                        
 

Figure 4: The same structure is shown from two different angles with a square face of the cube 
 emphasized (left) and a rhombic face of the rhombic dodecahedron emphasized (center). 

Compare the center image with the rhombic dodecahedron (right). 
 

 Thinking about the geometry of the underlying rhombic structure allowed me to create a hypar 
dodecahedron that is symmetric. Instead of thinking of the hypar dodecahedron as being made of 
pentagonal faces created from five hypars I focused on the structure of a rhombic triacontahedron for the 
underlying geometry. In Figure 5 the similar symmetry of the dodecahedron and the rhombic 



triacontahedron can be seen. The rhombic triacontahedron is the dual of the icosidodecahedron and the 
zonohedron of the icosahedron. All of these solids have icosahedral symmetry. 
 

 A rhombic triacontahedron is made from 30 rhombi with a ratio of long diagonal to short diagonal 

equal to the golden ratio " = $% &
' . The golden ratio is greater than 2 so these rhombi are slightly 

narrower than those of the rhombic dodecahedron. This is why Demaine et al’s hypar dodecahedron 
bulges unsymmetrically; the rhombi are too wide. 
 

 In order to model a rhombic triacontahedron I needed rhombi with the correct ratio of diagonals. 
Square paper does not work. Through experimentation I found that starting with rhombic paper with a 
diagonal ratio of 1.2 would result in pairs of hypars forming a rhombus with the correct diagonal ratio of 
".  The resulting hyparhedron shown in Figure 6 can be thought of as being based on a dodecahedron or a 
rhombic triacontahedron. 

         

                                                     
 

Figure 5: Compare the symmetry of a dodecahedron (left) to  
a rhombic triacontahedron (right). 

 

                  

Figure 6: “Day” can be thought of as being based on a dodecahedron (left) or  
a rhombic triacontahedron (right). 

 
 I named the resulting sculpture “Day.” While building this model I noticed interesting patterns on the 
inside of this structure and was curious what it would look like if I reversed the orientation of all the units. 
The result was the sculpture “Night” that is pictured in Figure 7. I was concerned there might not be room 
for all the “points” on the inside of the structure but they fit, with very little room to spare. 



 

 
 

Figure 7: To form “Night” I faced the points of pairs of hypars toward the center. This creates an 
interesting effect and makes the rhombic triacontahedron structure more obvious. 

 
 Once I made a symmetric model from sixty hypars folded from rhombi I was excited to see what else 
I could make. I had already found the correct size paper from which to make hypars that in pairs formed 
rhombi with a diagonal ratio of ". It made sense to next try to make another polyhedron formed from 
these rhombi. A hexecontahedron is a non-convex polyhedron formed from 60 golden ratio rhombi. The 
resulting hyparhedron, formed from 120 hypars is shown in Figure 8.  

 

                      
 

Figure 8: The structure of “Pahoehoe” (left) is based on a rhombic hexecontahedron (right). Each 
rhombus is formed from one orange and one black hypar. Pahoehoe is a type of Hawaiian lava that forms 

parallel ridges when it cools. 
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