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Abstract 
The Flatscape is a two-dimensional systematic representation of a higher dimensional regular polytope.  In 
using the Genesa numbering system to identify the value of each element of the regular polytope it allows 
one to observe number patterns; by adding color, tile patterns are displayed.  
 

 
Measure Polytope 

 
In Section 7.2 of Regular Polytopes Donald Coxeter defines the measure polytope with  

7.25     

€ 

Nk = 2n−k
n
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  

 Where 

€ 

Nk  is the number of k dimensional cells in a n-dimensional measure polytope.  Coxeter 
then goes on to define the orthotope as a parallelope that has vectors that are mutually perpendicular at 
each vertex and says: 
 

If the n perpendicular vectors all have the same magnitude, the orthotope is a hyper-cube 
or measure polytope,  γn, … The name “measure polytope” is suggested by the use of the 
hyper-cube of edge 1 as the unit of content (e.g., the square as the unit of area, and the 
cube as the unit of volume). 

 
Using the formula described by Coxeter in section 7.25, we can, by induction, show that the sum of 

all the elements (vertices, edges, faces, cells, …) of any measure polytope, γn, is 3n
 see Coxeter [1]. 

 

 

Assigning Systematic Numbers 
 

In the 1950’s the Genesa numbering was developed by Derald G. Langham to understand and classify 
crop genetics.  This concept has been adapted as a method for numbering the elements of a polytope.  

A Flatscape is a two-dimensional mapping that orders and relates all the elements of any measure 
polytope in any dimension.  Let each element of a measure polytope be represented by a square tile.  Let 
all of these tiles be of equal size, regardless of their dimension as the element Nk.    

As the dimension increases, the total number of elements increases in powers of three, therefore it is 
natural to arrange these unit tiles in ever increasing 3 x 3 larger square mapping.  That is, for any n-
dimensional measure polytope, the total unit tiles 3n are arranged in ever expanding square mappings, 
starting with the unit tile and proceeding in exponential steps (i.e. 30,31,32,…,3n). 
 
 

Two-dimensional Representation of a N-dimensional Measure Polytope 
 

This representation will be built in the xy plane.  Let this xy plane be covered with finitely many unit 
square tiles.  Each unit tile will represent an element of the measure polytope.  The elements will be 
systematically numbered using base 3.  This numbering will arrange the polar elements, which are 
defined as being additively symmetric about the center cell, Πn. The sum of polar opposite cells will be 
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twice the value of the center tile of the Flatscape of a measure polytope.  The central tile of a Flatscape is 
called Πn, and represents the measure polytope itself.  Additionally for each Πn-k cell, the polar elements 
will sum to twice the value of the center element of that particular Πn-k.  

Let a unit square represent a point, Π0, to which is assigned a value of zero, see Figure 1a.  To create 
the representation of a unit vector Π1, replicate this zero square and translate this replicate two-steps in the 
y direction, see Figure 1b.  

There now exists a row of three unit squares in the y direction.  The two squares (the original square 
and its replicate) represent the end points, the vertices of the line.  The unit square that occupies the space 
between the two end squares represents the higher dimensional space that is created in the process of 
replication and translation.  In this case, the square in the middle represents the line segment between two 
end points in Π1.  See Figure 1c. 
  
 
 
 
 
 
 

 
 
 

 
 

In order to assign systematic numbers to each of the elements we will take advantage of the triadic 
aspect of this replication and translation.  That is, one element becomes two by replication and a third 
element is defined in the translation.  That is, there is a space created between the original and its 
replicate.  

The original square is numbered “0” and the replicated square, two steps in the y direction, is 
numbered “2” (2 x 30).  The square that is between 0 and 2 represents the next higher dimension of the 
point, i.e. line.  This square is numbered “1”  (1 x 30). 

To create the representation of the unit square (Π2), replicate the three squares (Π1) and translate the 
replicate two steps in the x direction.  In moving the II1 in the x direction, the values for the replicated 
three squares are increased by 31. Since the replicated squares have translated two steps, the net increase 
is two times 31, i.e. the replication of 0 becomes 6, the replication of 1 becomes 7, and the replication of 2 
becomes 8, see figure 1d. 

We now have a 3 x 3 square, made up of nine unit squares, six of which have been numbered.  The 
three unit squares between the two II1 are the elements in a higher dimension created by the replication 
and translation.  

By replicating and translating the original space in a direction perpendicular to the original direction, 
we have “traced” out the elements of the next higher dimension.   

In this case, the vertex elements have become edges and the edge element has become a square (II2).  
Since these three unit squares have moved one step from the original three unit squares, in the 31 
direction, the values are 3 and 5 for the N1 elements and 4 for the N2 element, see figure 1e. 

To construct the representation for the elements of a cube one needs to build upon the 3 x 3 square.  
The next step is to replicate these nine unit squares.  Translate this replicate in the y direction in two steps, 
each step being the size of the 3 x 3 square.  Since this translation represents a stretching to the next 
higher dimension, the numerical effect of this translation increases the value of the replicated squares by 
32.  Since the replicated square has been moved two steps; the values of the original unit squares are 
increased by 2 x 32 (18), see figure 1f. 

Figure 1:  Genesa numbering of a point element becoming a            
Flatscape cube. 
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The 3 x 3 square that is created between original 3 x 3 square and its replicate has elements that are 
exactly one dimension higher than the elements of the original square.  That is, the four vertices (N0) 
become edge elements (N1), the four edge elements become face elements (N2), and the face element in 
the original square becomes a N3 element.  In total, there are 27 elements; 8 vertices (N0), 12 edges (N1), 6 
faces (N2), and 1 cell (N3), see figure 1g. 
 
 

Flatscape: Systematic Color Scheme for the Elements 
 

In order to create a visual distinction of the various elements, one can assign each type of element a 
unique color. In these figures the N0 elements are light gray, the N1 elements are light red, the N2 elements 
are light blue, N3 elements are light yellow, and light green element will represent the hypercube (N4) 
element.  See figure 2a. 

By adding a new color every time we move to a higher dimension, we can get a visual sense of the 
number of elements that exists for each of the measure polytopes.  The hypercube (34) has 81 elements: 
16 vertices (N0), 32 edges (N1), 24 faces (N2), 8 cubes (N3), and 1 hypercube (N4).  Applying the same 
method of replication and translation enables a systematic representation of the elements as 81 unit 
squares arranged in nine 3 X 3 squares. The translation of the replicated cube in the x direction is a 
stretching to a higher dimension, which in turn increase the values of the elements of the original cube by 
54 and 27.  The middle section created by the translation of the original cube has elements that are one-
dimension higher then the elements of the original cube. 
 The gray vertices are now red edges, the red edges are blue faces, the blue faces are yellow cubes, 
and the yellow cube becomes the center element of a green hypercube.  See figure 2b. 

 

 
 

Opposite Pairs of Elements 
 

Polar opposite elements always add to twice the sum of the value 
of their center element.  This is true for all dimensions and for all 
elements of each measure polytope, see Figure 3. 

For the hypercube the 16 grey vertices, the 32 red edges, the 
24 blue faces, and the 8 yellow cubes taken in opposite pairs, 
total to 80, which is twice the value of the center element 40.  

The elements of the hypercube also display polar numeric 
balance. For each of the eight cubes represented in the hypercube, 
the vertices, edges, and faces are symmetrically balanced, i.e. the 
sum of the polar opposite pairs total to twice the value of the 
center cube element.  
 
 

Figure 3: Flatscape polar balance 
for the elements of a Hyper-cube.  

Figure 2: Flatscape hypercube. 

(a) (b) 
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Number and Distribution of the Elements 

 
As the dimension of the measure polytope increases the number of the elements increase.  For each 
dimension n, there is an element Nj such that the number of any element Nk 

€ 

≤ Nj.  For any Nj the 
number of dimensions for which Nj is the element with the maximum number of members is four.  These 
four dimensions where Nj has the maximum number of elements are consecutive dimensions, i.e. n, n—1, 
n—2, n—3. 

The process of replication and translation ensures that all elements increase by a factor of two plus 
the number of elements of one less dimension (Nk=2N’k + N’k-1).  Since the vertices (N0), have no element 
of one dimension less, the vertices simply double in number, i.e. 2,4,8,…,2n. 

For the other elements, they stay the dominant participant for four generations, sharing this dominant 
position with the element of one less dimension in its first generation and sharing its position of 
dominance with the element of one higher dimension in its last generation. 

For example, in 2-dimensions, the cube (N3), as an element does not yet exist.  In 3-dimensions, the 
cube has one member (tile 13), in 4-Dimensions it has 8 members (13,67,39,41,31,49,37,43).   

The cube (N3) element becomes the dominant element, sharing this position with edges (N2), in the 
eighth dimension, with both members having 1,792 members each.  In eleventh dimension, the cube 
enjoys its last position of dominance sharing this position with the hypercube, each having 42,240 
members.  See Figure 4.  Thus, as one expands the measure polytope to higher dimensions, while 
systematically coloring each element, one can define a Flatscape of changing colors where elements 
temporarily hold a position of dominance to be relinquished as higher dimensions appear.   
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Figure 4:  Distribution of components per dimension. 
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